Skip to Main content Skip to Navigation
New interface
Journal articles

Understanding the Chemical Shifts of Aqueous Electrolyte Species Adsorbed in Carbon Nanopores

Abstract : Interfaces between aqueous electrolytes and nanoporous carbons are involved in a number of technological applications such as energy storage and capacitive deionization. Nuclear magnetic spectroscopy is a very useful tool to characterize ion adsorption in such systems thanks to its nuclei specificity and the ability to distinguish between ions in the bulk and in pores. We use complementary methods (density functional theory, molecular dynamics simulations, and a mesoscopic model) to investigate the relative importance of various effects on the chemical shifts of adsorbed species: ring currents, ion organization in pores of various sizes, specific ion–carbon interactions, and hydration. We show that ring currents and ion organization are predominant for the determination of chemical shifts in the case of Li+ ions and hydrogen atoms of water. For the large Rb+ and Cs+ ions, the additional effect of the hydration shell should be considered to predict chemical shifts in agreement with experiments.
Document type :
Journal articles
Complete list of metadata
Contributor : Céline Merlet Connect in order to contact the contributor
Submitted on : Friday, September 30, 2022 - 1:33:26 PM
Last modification on : Monday, November 7, 2022 - 5:24:34 PM


 Restricted access
To satisfy the distribution rights of the publisher, the document is embargoed until : 2023-03-22

Please log in to resquest access to the document



Anagha Sasikumar, John Griffin, Céline Merlet. Understanding the Chemical Shifts of Aqueous Electrolyte Species Adsorbed in Carbon Nanopores. Journal of Physical Chemistry Letters, In press, 13 (38), pp.8953-8962. ⟨10.1021/acs.jpclett.2c02260⟩. ⟨hal-03792747⟩



Record views