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Abstract. Topological Data Analysis is a field of great interest in many
applications such as finance or neuroscience. The goal of the present
paper is to propose a novel approach to building simplicial complexes
that capture the multiway ordered interactions in the components of
high-dimensional time series using the theory of Signatures. Signatures
represent one of the most powerful transforms for extracting group-wise
structural features and we put them to work in the task of discover-
ing statistically meaningful simplices from a complex that we estimate
sequentially. Numerical experiments on an fMRI dataset illustrates the
efficiency and relevance of our approach.

Keywords: Topological Data Analysis, Signatures, simplicial complex,
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1 Introduction

Topological Data Analysis (TDA) is a new field with a wide range of application
in fields such as finance, neuroscience, medicine, etc. TDA addresses the prob-
lem of accounting for groupwise interactions in the data and therefore opens
very promising prospects to better apprehend complex phenomena than models
relying on pairwise interactions only. Several tools from algebraic topology, such
as homology groups, homotopy groups, Betti numbers, etc can be put to work
in building a set of relevant features that can capture the intricate nature of
dependencies.

Some compelling examples of the benefits of using topological features appear
regularly in the literature. In [17] the homological features of brain functional
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networks are shown to take different values in two states depending on the ab-
sorption of some drug. More generally, it is shown in [21] that homological cycles
in structural brain networks finds connections between regions of early and late
evolutionary origin. TDA can also be efficiently used in dynamical settings as
well. One very intriguing example is change detection as illustrated in the study
of functional brain networks conditioned in different tasks [22]. In [12] it is in-
vestigated how speech-related brain regions connectivity changes in different
scenarios of speech perception.

In the present paper, we focus on the the analysis of dynamical high di-
mensional phenomena and on the problem of constructing associated relevant
topological structures with the aim of proposing news computational tools for
deepening our understanding of the higher order structures hidden in time series
data. Our main contribution is a new approach to building statistically informed
simplicial complexes and possibly more general structures.

Our two main tools will be the basic objects of TDA and Signature theory.
Signatures were recently proposed as a very powerfull feature map for time series
and dynamical systems in [5,7,14]. The introduction of Signatures for building
topological structures for high dimensional dynamical phenomena is new and
appears as a key and very natural ingredient that can accurately account for
orientations of the various simplices in the complex at hand while capturing the
main shape features from the dynamics. Using Signature in a statistical/machine
learning context is an approach which is adopted in a growing number of appli-
cations nowadays [7] and our work is also intended to illustrate the relevance of
Signature theory combined with statistics/machine learning for building a higher
order interaction modelling framework.

In mathematical terms, our proposal is based on the assumption that k-
simplices are simply sets of k nodes with there time series attached to them,
with an orientation prescribed by the ordering of the nodes in computing their
associated k-Signature. Recall that the orientation encoded in the computation of
the associated signature carries potentially very interesting interpretation about
the causal dependencies of the times series [11]. In the next step, the relevance
of incorporating a simplex into our simplicial complex is assessed using a purely
statistical procedure: each oriented k-simplex is associated with a corresponding
k-Signature that is included into a set of multivariate features that is used to
predict the Signatures of all the other potential simplices. More precisely, our
construction is a generalisation of the approach developed by Meinshausen and
Bühlmann in [16] for Gaussian Graphical Models. Simplices that are selected
from the set of potential Simplices whose Signature can predict the Signature of
a target simplex in terms of confidently regressing or predicting5 the Signature
associated with this target are included as candidates for being considered as
adjacent to this target. Using this procedure, we obtain a construction of a sim-
plicial complex that accurately incorporates the statistical relationships between
all the simplices in terms of regression or prediction, while keeping track of the
inherent orientations of the simplices.

5 for time dependent Signatures
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The plan of the paper is as follows. In Section 2, we recall the necessary
background on topological data analysis and Signature theory. In Section 3, we
present our method for constructing the simplicial complex using the Signatures
of the simplices and the LASSO algorithm. In Section 4, we present our numerical
experiments on real datasets. A conclusion section completes the paper.

2 Background on Signatures and topology

In this section, we summarise the mathematical prerequisites from topology and
the theory of Signatures.

2.1 Recalls on the theory of Signatures

The theory of Signatures is a new topic of growing interest that emerged as
a sub-branch of the theory of rough paths [15,10,9] which has a long history
in mathematics and control that may have started with the work of Chen [4].
Rough paths provide a new framework for the analysis of stochastic processes
and permitted to resolve various open problems, including the existence of a
solution to the KPZ equation in mathematical physics, a result for which Martin
Heirer was awarded the Fields medal [6]. Recently, this theory developed as a
new tool for the analysis of signals in the area of Machine Learning [5,7,14] where
remarkable performance was achieved for a series of difficult pratical problems
including the analysis of financial data, medical data and textual data [14,13].
Lately, an intriguing relationship with recurrent neural networks was exhibited
using the viewpoint of control theory [8].

Let us now turn to the definition and some interesting properties of Signa-
tures. Consider a d-dimensional path X = (X1, X2, ..., Xd) : R → Rd. Then,
the (truncated)6 signature of X on [a, b] is an object in T (Rd) = Rd ⊕ Rd×d ⊕
Rd×d×d ⊕ . . . , defined, for j ∈ N∗ by

(S[a,b](X))i1,i2,...,ij := S
i1i2...ij
[a,b] (X)

=

∫
· · ·

∫
a≤s1≤s2≤···≤sj≤b

dXi1
s1dX

i2
s2 . . . dX

ij
sj (1)

which lies in R

j times︷ ︸︸ ︷
d× d× · · · × d.

Chen’s identity is a very useful result that allows to compute the Signature
recursively based on linear interpolation of observed values of a trajectory.

Theorem 1 (Chen’s identity). Let X : [a, b] → Rd and Y : [b, c] → Rd.
Consider the concatenation of X and Y (noted X ∗ Y ) defined by:

(X ∗ Y ) : [a, c] → Rd

t 7→
{
X(t) , t ∈ [a, b]
X(b)− Y (b) + Y (t) , t ∈ [b, c].

6 The k-truncated version of the signature is S(1)(X)⊕ S(2)(X)⊕ · · · ⊕ S(k)(X)
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Then:

S[a,c](X ∗ Y ) = S[a,b](X)⊗ S[b,c](Y )

Augmentation of a path The Signature defines X uniquely on [a, b] close to
tree-like equivalence (i.e. there exist I, J ⊂ [a, b], such that X|I(t) = X|J(b− t)).

Proposition 1. S[a,b](X) define X uniquely on [a, b] if there exists 1 ≤ i ≤ d
such that Xi is strictly monotonic on [a, b].

This result leads to consider the time-augmented path X̃ associated with
X, defined as X̃ = (t,X1, X2, . . . , Xd) in order to ensure the unicity of S(X).
Another augmentation will be useful for our work, namely the Lead-Lag aug-
mentation.

Definition 1. Consider a d-dimensional path X with T+1 timesteps. The lead-
lag augmentation of X is a 2d-dimensional path Xlead,lag = (XLead, XLag)
with 2T + 1 time steps such that:

XLead = {X(0), X(1), X(1), X(2), . . . , X(T ), X(T )}
XLag = {X(0), X(0), X(1), X(1), . . . , X(T − 1), X(T )}

The Lead-Lag augmentation was found to play an important role in many
machine learning applications [7].

2.2 Recalls on topology

We now turn to some useful definitions from topology. Consider a set of n vertices
V = {v1, . . . , vn}.

Definition 2. For k < n, a k-simplex σk of V is the collection of a subset Vk

of length k+1 and all its subsets. The geometric realization of a k-simplex is
the convex hull C of k + 1 points, such that dim(C) = k. A face (of dimension
l) σk is a collection of set in σk that form a l-simplex (l ≤ k).

Definition 3. A simplicial complex C on V is a collection of simplices (of
V ) such that for every σi ∈ C, there exists j with σi ∩ σj a sub-simplex of both
σi and σj.

Definition 4. The dimension of C is the dimension of the highest simplex in
C (i.e. the highest k such that there exist a k-simplex in C).

Definition 5. An orientation on C is a order of the vertices for every simpli-
cies in C. We use the notation [v1, v2, v3] to denote an oriented 3-simplex.

From a geometric point of view, C is constructed by attaching a group of
simplices to each other by binding them with a shared face.
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Definition 6. Let ∆ be a simplicial complex and σ one of its k-sub-simplices.
The neighborhood of v in ∆ is the set Lk(σ,∆) of all the k-sub-simplices τ of
∆ such that:

– σ ∩ τ = ∅
– σ ∪ τ is a face of ∆.

Especially, the neighborhood of a vertex v is all the vertices vi such that the edge
{v, vi} ∈ ∆.

The goal of our work is to build a simplicial complex encoding the groupwise
interactions explaining the dependencies inside high dimensional time series. The
main ingredient in our approach is to make use of relevance measures in predict-
ing simplex indexed -groups of time series using other simplex indexed -groups of
time series as a criterion for selecting potential higher and higher dimensional
simplices for (or for the sake of mitigating the computational complexity, se-
quential greedy) aggregations. We turn to the description of our approach in the
next section.

3 Building simplicial complexes between time series

3.1 Presentation of the method

In the same spirit as for Gaussian graphical models [16], our goal is to infer a
higher order model from data using a model selection based numerical procedure.
One brute force method is to use sparse solutions of LASSO type estimators
that can be employed to predict all sub-groups of times series based on all other
groups of time series.

In the present paper, our goal is to propose a better structured solution to
the problem of capturing interesting structures in the dependency relationship
among the various components of high dimensional time series. Interesting types
of structure often come from Topological Data Analysis (TDA) as presented in
e.g. [3]. Inferring such structures is however extremely computationally extensive,
and even more so if we account for the necessity of using Cross-Validation types
of hyper parameter calibration procedures.
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Our proposal is to adopt a principled sequential approach to simplicial com-
plexes estimation. In our approach, the simplices that will be incorporated into
the simplicial complex are chosen among completions of existing simplices into
one order higher simplices, hence allowing to stratify the construction by the
complexity of the interactions. The selection is performed using the LASSO,
complemented by inspection of the R2 criterion. One key ingredient of our
construction is the use of the Signature transform as features for prediction.
Signatures bring an essential information to the construction of our simplicial
complex, namely orientation, since, Signatures encode the order in which the
times series are integrated in (1). Using the orientation can be instrumental for
the interpretation of the interactions among the various components of high di-
mensional time series, and noticing any difference in the prediction capabilities
of two different orderings might be extremely useful in practice.

We now turn to the details of the implementation.

3.2 Our greedy order stratified algorithm:

Consider a group of d (augmented) time series G = {X1, X2, . . . , Xd} with T +1
timesteps each of the form Xi = [(0, Xi(0)), (t1, X

i(t1)), . . . , (tT , X
i(tT ))].

In this section, we introduce our main contribution, namely the construction
of a simplicial complex that encodes the multiway dependencies of the various
dimensions in a high-dimensional time series. We also discuss a greedy algorithm
for sequentially building the sought for simplicial complex that mitigates the
computational complexity. As mentioned earlier in the introduction, the main
principle of the our algorithm is to build consistent simplices within groups of
time series using regression or prediction error measures. In our implementation,
we chose to present the Signature prediction version, consisting of predicting the
Signature at a simplex as a linear function of the signatures at other simplices
of various orders.

In order to keep control on the computational complexity of the method, we
now present a lighter greedy algorithm. For any t ∈ J0, T − LK with L to be
specified.

Closure of a simplicial complex.

In our framework, we need to introduce the following definition.

Definition 7. Let C denote a simplicial complex. We denote by C the simplicial
complex consisting in appending all k-simplices whose single incorporation re-
sults in creating a simplex of order k + 1 using the simplices already present in
C only.

The sequential algorithm.

We now define the steps of our sequential greedy method as follows.
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Data: Set ℓ = 1 and set C(1) = {1, . . . , d}.
Result: The time series interaction simplicial complex
while No more simplex is selected do

Select an (augmented) k-subset of nodes CJ = {Xj1 , Xj2 , . . . , Xjk}, with
J = {j1, . . . , jk} in C(ℓ), and compute S[t,t+L](C

J).;

For every (augmented) k′-combination CJ′
= {Xj′1 , Xj′2 , . . . , Xj′

k′ } with

J ′ = {j′1, . . . , j′k′} in C(l), compute S[t,t+L](C
J′
);

Predict S[t,t+L](C
J) from

(
S[t,t+L](C

J)
)
1≤j≤(d−k−1

k+1 ) with LASSO;

if R2 > 0, 67 then
Select all non-zero βj LASSO coefficients

else
Set βj = 0 for all j.

end

end
Algorithm 1: Sequential construction of the simplicial complex

Each non-zero βj coefficient represents a k-simplex whose vertices are
{Xi, Xj1 , Xj2 , . . . , Xjk+1

}. This simplex comes with a natural weight w. As this k-
simplex can be produced multiple time (by predicting Xi with {Xj1 , . . . , Xjk+1

}
or Xjl by {Xi, Xj1 , . . . , Xjk+1

}k ̸=l), this weight is produced as the sum of all the
non-zero LASSO coefficients obtained.

By iterating the procedure for every possible simplices whose signature is
a statistically interesting quantity to predict, and every dimension of simplex
k ≤ K (for a chosen k), one can produce a simplicial complex among G.

Remarks

Let us now address some technical question that arise from the proposed con-
struction.

Time dependancy: The algorithm is applied to evolving time series for which
the computation of the Signatures is updated incrementally and prediction
is performed using these updated Signatures as time increases.

Orientation: This algorithm gives a natural orientation on every simplex, as
S(Xi, Xj) ̸= S(Xj , Xi) which is often of great potential use for interpretabil-
ity.

4 Numerical experiments and Applications

Multivariate times series are omnipresent and high order correlation occurred
frequently in e.g. the domains of finance and neuroscience. We evaluated our
method on two public data sets analysed by [19] : the fMRI resting-state data
from the HCP https://www.humanconnectome.org/.

https://www.humanconnectome.org/
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4.1 Practical choices and hyper parameters

We consider only simplices up to triangles k ≤ 2 for now. Due to the concerns
about complexity, the depth of signature is set to depth = 2 for the construction
of both 1-simplex and 2-simplex. More precisely, we use time-augmented path to
calculate 2-truncated signatures of 0-simplices, in order to construct 1-simplices.
As a design choice, for 2-simplices the predictors (1-simplices composed of two
times series) are not augmented when applying LASSO regression. Clearly, many
different choices could be imposed on how we model the dependencies between
subgroups of time series.

The regularisation term of LASSO is crucial for our method since it directly
controls the sparsity in prediction using the linear models on signature features.
Recall that the selected groups of time series will immediately be translated into
new simplices in our sequentially growing simplicial complex.

In the present numerical experiments, we show that coarsely selected values
for these hyperparameters already provide interesting results on a real dataset.
In practice, λ1−simplex and λ2−simplex have been empirically tuned to the values
λ1−simplex = 1000 and λ2−simplex = 3 for the fMRI dataset. More experiments
based on extensive comparisons over a refined grid will be tested in an extended
version of the present paper. The latest version of our implementation is available
on our GitHub page :

https://github.com/ben2022lo/conf-complex-network

4.2 Modelling interactions in Functional MRI datasets

Functional connectivity is a neuroscience approach aimed at understanding the
organization of the human brain based not solely on spatial proximity and struc-
tural factors, but rather on its functionality, i.e. its connectivity patterns between
different brain regions and networks. For instance, even seemingly routine tasks
such as paying attention during a lecture have been found to activate regions like
the pulvinar (within the thalamus), the superior colliculus (in the midbrain), and
the posterior parietal cortex [18]. In this perspective, and given that functional
brain imaging data can be regarded as time series, the theory of Signatures could
prove to be particularly useful.

In the absence of specific tasks or external stimulation (resting, meditating,
sleeping, etc.), the brain enters what is known as resting-state. The Default
Mode Network (DMN) becomes prominently active during this resting state.
This neural network includes key regions such as the medial prefrontal cortex
(mPFC), the posterior parietal lobe (PTL), the posterior cingulate cortex (PCC),
and the precuneus [2].

We tested our method on resting-state fMRI(rs-fMRI) data 7 preprocessed
by the same pipeline in [19]. The dataset contains 100 cortical (Schaefer100
[20]) and 19 subcortical ROIs (Regions of Interest). In order to evaluate the
quality of identified interactions, we have selected a subset of 15 ROIs of which

7 HCP, http://www.humanconnectome.org/

https://github.com/ben2022lo/conf-complex-network
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functional connectivities during resting-state are well known. We constructed
simplicial complex on all 1200 timesteps, and analysed the top 10 1-simplices and
2-simplices that are the most persistent, i.e.that occurred on most time-steps.
Besides, we observed that the life duration distribution of 1-simplices is centred
and symmetric, whereas the distribution of 2-simplices is positively skewed.

Fig. 1: Histograms of the observed duration for the discovered 1 and 2-simplices

The 1-simplex representing the interaction between 7Networks LH Vis 9 and
7Networks LH SomMot 4 occurred on most occasions (865 time steps). The most
persistent 2-simplex (59 time steps) represents the interaction among LH Cont
Par 1, RH Default PFCdPFCm 2 and RH Default pCunPCC 2.

Fig. 2: Simplicial complex constructed with persistent simplicies. 1-simplices are
blue, 2-simplicies are defined by their orange 1-simplex faces. The gray signifies
the coincidence of a 1-simplex and one face of a 2-simplex. The selected ROI and
numerated 0-simplices are matched by the following dictionary: 0 - LH Vis 9, 1
- LH SomMot 4, 2 - LH DorsAttn Post 4, 3 - Cont Par 1, 4 - LH Cont pCun 1,
5 - LH Default pCunPCC 1, 6 - LH Default pCunPCC 2, 7 - RH Cont Par 1, 8 -
RH Cont PFCl 1, 9 - RH Cont pCun 1, 10 - RH Default Par 1, 11 - RH Default
PFCdPFCm 1, 12 - RH Default PFCdPFCm 2, 13 - RH Default PFCdPFCm 3,
14 - RH Default pCunPCC 2.
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Most of the persistent 1-simplices involve the prefrontal cortex, the parietal
lobe and the precuneus, which is consistent with literature as all three regions
are active during resting-state [2]. The most persistent interaction include sub-
regions of the left hemisphere’s visual and somatomotor networks. Component
LH SomMot 4 has previously been associated with components of the left (LH
Default PFC ) and right (RH Default PFCv 2 ) PFC in a study proposing an age
prediction pipeline Ayu using rs-fMRI data [1]. In the same study, several visual
areas (RH Vis 1, 3 and 4 ) are linked to the PFC areas during rs-fMRI (LH
Default PFC 1, 2, and 3 ), although they are located in the right hemisphere.

The top 10 interactions that occurred the most include components from
the same three recurrent brain areas that are the PFC, parietal regions and the
precuneus, with the latter taking par in all 10 of them. This aligns with previous
work [2] as all three are indeed involved in the Default Mode Network which is
active during rs-fMRI.

The most persistent simplicies and matching ROIs are represented in Figure
3. In particular, the interactions discovered using our approach show excellent
coherence with well identified spatial activity zones.

Fig. 3: Anatomical representation of the 10 most persistent 1-simplices and 2-
simplices matched to their corresponding network in the 7-network parcellation
by [23]. Only parcels that are part of the most persistent simplices are colored.
Each color corresponds to a network as per the following color legend: yellow
- Visual, red - Somatomor, purple - Dorsal Attention, green - Control, blue -
Default.
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5 Discussion and future work

The qualification of high-order interaction of time series is a relatively new re-
search area. Previous work, such as [19], tried to estimate the higher order in-
teractions in high dimensional signals. Our method, based on the theory of Sig-
natures that captures higher dimensional interactions together with what can
be encoded as a simplex orientations, is able to leverage much more refined
information about the mutual behaviour of the observed phenomena.

From a theoretical point of view, although the orientation of the various sim-
plices discovered in the sequential construction was not used proper, it could
be fruitfully exploited in the future. Secondly, the problem of dimension consis-
tency could be appropriately tackled using group LASSO types of techniques or
SLOPE-based approaches.

To conclude, we mention that the method we just presented could also be
handily put to work on nonstationary problems for e.g. change point detection
such as in early detection of epidemics, using human in the loop validation
steps. The simplicial complex could be sequentially updated as a function of
time as well, leading to a dynamical topological structure whose characteristics
and abrupt potential changes could help extract valuable information about the
emergence of certain interesting phenomena.
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