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Context

o Longitudinal ordinal data y; ;; whose levels are coded {1,...,C;}: the
observation of the 7-th variable for the 2-th unit at time ¢

(2=1,....,N;5=1,...,Jand t=1,....7T).
* We want to cluster units accounting for the temporal
behavior

o= _ Idea: rewrite them in a three-way format and use latent
underlying continous matrix-variate distributions!

e We organize our data in a random-matrix form such that:
/%‘,1,1 Yl yz‘,1,T\

Yig1 = Yige = Yig,T

\Yi g1 Yigt - YiIT)

From continuous...

» Matrix-variate Normal: Z ~ MN =Ty M, P, ¥), where

o M ¢ R/*T" is the matrix of means
o & ¢ RY*1 ig a covariance matrix between the T occasions
oY € R7*/ is the covariance matrix of the .J variables

The matrix-normal probability density function (pdf) is given by
QTN Z|M, D, %) =
1

2m) 20| 45| F exp {—§tr[2_1(Z _ M) (Z - M)T]}

o Mixtures of Matrix-Normals (MMN) were introduced by Viroli |3]

K
FY |, 0) =S md T Z| My, Dy, 1),
k=1
where

® K : number of mixture components
o = {m}  : vector of mixing proportions, Y1, = 1
® O = {0}, : set of component-specific parameters O, = { M, Oy, 2.}

—> Advantages: offers a parsimonious and easily interpretable way to
include the time dimension in the clustering.

...to ordinal data

[n the clustMD framework [2] cross-sectional mixed data are assumed to
be all manifestation of underlying multivariate normals, and a (Gaussian
mixture model operating on the underlying normal variable is used to cluster
them.

As for the classical clustMD, we can assume that each observed ordinal
matrix Y is indeed the manifestation of a latent random matrix Z, which
follows a matrix-normal distribution.

' Z¢,1,T\
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To map from Y; to Z;, let y; denote a C';+1-dimensional vector of thresholds
that partition the space of the underlying latent continuous variable for the
7-th ordinal variable. Let the threshold parameters be constrained such
that —oo = ;0 < 1 < ... < 75,0, = 00. I the latent z; ;; is such that

Vie—1 < Zij+ < V. then the observed ordinal response, y; ;; = c.

A key point is of course the choice of the thresholds v = {v;}7/_;. In [1],
thresholds are fixed in advance to avoid identifiability and computational
complexity issues. Also in |2|, for ordinal variables they are fixed such that
Yie = @ (d.), where . is the proportion of variable J which are less than
or equal to level ¢ and ¢ is the normal cumulative distribution function.
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Model

The model relies on the following hypotheses:

o f; € {0,1}" is the latent allocation variable such that £;; = 1 if the i-th
unit belongs to the k-th cluster.

o YE = (Y, ..., V&) € R¥ indicate the observed response pattern for the
i-th unit.

ol ~ M(1l,m), ™= (m,..., )
® Zz"ezk =1~ MN(JXT)(ZZ‘@k)a @k — {Mka (I)ka Zk}
.Yﬁ|zlae‘&/€ =1~ M(L&ﬁ)? ‘sz — (191(ZZ)7 I 1QR(ZZ))

where M indicate the multinomial distribution, €2, is the portion of the
J x T-space which determines the the r-th pattern, and 1q (Z;) is the
indicator function that equals 1 when the elements in Z; have values that
determine the r-th pattern. Of course, when Z; is given, the the value of

Y, is no more random.
We can derive the joint density of Z;, Y3, £; as:

FOYS 2, 8) = f(Y|Zi,0) f(Z:)€:) f(€:),

where:
K

i | R i
ey = 10w, f(zie) = 11 [0 z100] " (Y12 €) = 11 10,(2)"

Model Inference

Due to the presence of latent variables, the maximization ot the likeli-
hood cannot be done in “close form”, and we must then use an EM al-
corithm, which maximizes a lower limit of the log-likelihood: the complete
log-likelihood. We can write the complete log-likelihood as

T
2J log(27)

N (R K
log Le(m,O|Y", Z,£) = 2{2 Yirlo (Z:)+ > li|log(my)
—1
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J T | B N
— 5 og(|Px[) — 5 log(|Z]) — §t7”[2k1(2i — M) (Z; — M,)T] }

o E-step: we compute the expectation of the complete log-likelihood with
respect to the latent data Z and the cluster labels £. For each response
pattern r, we can approximate the value of Z;|¢;, as the
expected value of the truncated multivariate normals
(using properties of matrix-variate normals), given the
parameters O} of the assigned cluster.

The latent variable £; can be computed by means of Bayes’ theorem as:

7 o f(Zz10F Yz

(Y =7, @0, ) =

which would require Monte-Carlo approximation.

o M-step: the parameter updates are given by:
2N Gi (Z = M) T2 - M)
TeN, )

0 -

S ~r(s ~N—1(s ~r(s
@5{3) _ Yitt Ez('k)(Zi - M,i ))Tzk | )(Zi — M/g )) fr,is> _
JYN 0 |

The E and M step are iterated until convergence of the log-likelihood.

A longitudinal clustMD?

This is the first step of a broader project, aiming at extending this framework
to account for mixed data (continuous, ordinal, nominal, count) in order to
cluster mixed longitudinal dataset.
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