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Context
• Longitudinal ordinal data yi,j,t whose levels are coded {1, . . . , Cj}: the

observation of the j-th variable for the i-th unit at time t
(i = 1, . . . , N ; j = 1, . . . , J and t = 1, ..., T ).

• We want to cluster units accounting for the temporal
behavior

• ⇒ Idea: rewrite them in a three-way format and use latent
underlying continous matrix-variate distributions!

• We organize our data in a random-matrix form such that:

Yi =



yi,1,1 · · · yi,1,t · · · yi,1,T
... . . . ... · · · ...

yi,j,1 · · · yi,j,t · · · yi,j,T
... · · · ... . . . ...

yi,J,1 · · · yi,J,t · · · yi,J,T



From continuous...
• Matrix-variate Normal: Z ∼ MN (J×T )(M, Φ, Σ), where

• M ∈ RJ×T is the matrix of means
• Φ ∈ RT×T is a covariance matrix between the T occasions
• Σ ∈ RJ×J is the covariance matrix of the J variables
The matrix-normal probability density function (pdf) is given by
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• Mixtures of Matrix-Normals (MMN) were introduced by Viroli [3]

f (Y |π, Θ) =
K∑

k=1
πkφ

(J×T )(Z|Mk, Φk, Σk),

where
• K : number of mixture components
• π = {πk}K

k=1 : vector of mixing proportions,
∑K

k=1 πk = 1
• Θ = {Θk}K

k=1 : set of component-specific parameters Θk = {Mk, Φk, Σk}

=⇒ Advantages: offers a parsimonious and easily interpretable way to
include the time dimension in the clustering.

...to ordinal data!
In the clustMD framework [2] cross-sectional mixed data are assumed to
be all manifestation of underlying multivariate normals, and a Gaussian
mixture model operating on the underlying normal variable is used to cluster
them.
As for the classical clustMD, we can assume that each observed ordinal
matrix Y is indeed the manifestation of a latent random matrix Z, which
follows a matrix-normal distribution.

Zi =



zi,1,1 · · · zi,1,t · · · zi,1,T
... . . . ... · · · ...

zi,j,1 · · · zi,j,t · · · zi,j,T
... · · · ... . . . ...

zi,J,1 · · · zi,J,t · · · zi,J,T


−→ Yi =



yi,1,1 · · · yi,1,t · · · yi,1,T
... . . . ... · · · ...

yi,j,1 · · · yi,j,t · · · yi,j,T
... · · · ... . . . ...

yi,J,1 · · · yi,J,t · · · yi,J,T


To map from Yi to Zi, let γj denote a Cj+1-dimensional vector of thresholds
that partition the space of the underlying latent continuous variable for the
j-th ordinal variable. Let the threshold parameters be constrained such
that −∞ = γj,0 ≤ γj,1 ≤ ... ≤ γj,Cj

= ∞. If the latent zi,j,t is such that
γj,c−1 < zi,j,t < γj,c then the observed ordinal response, yi,j,t = c.

A key point is of course the choice of the thresholds γ = {γj}J
j=1. In [1],

thresholds are fixed in advance to avoid identifiability and computational
complexity issues. Also in [2], for ordinal variables they are fixed such that
γj,c = ϕ−1(δc), where δc is the proportion of variable J which are less than
or equal to level c and ϕ is the normal cumulative distribution function.

Model
The model relies on the following hypotheses:
• `i ∈ {0, 1}K is the latent allocation variable such that `ik = 1 if the i-th

unit belongs to the k-th cluster.
• YR

i = (Y R
i1 , ..., Y R

iR) ∈ RR indicate the observed response pattern for the
i-th unit.

• `i ∼ M(1, π), π = (π1, ..., πK)
• Zi|`ik = 1 ∼ MN (J×T )(Zi|Θk), Θk = {Mk, Φk, Σk}
• YR

i |Zi, `ik = 1 ∼ M(1, ξR
i ), ξR

i = (1Ω1(Zi), . . . , 1ΩR
(Zi))

where M indicate the multinomial distribution, Ωr is the portion of the
J × T -space which determines the the r-th pattern, and 1Ωr

(Zi) is the
indicator function that equals 1 when the elements in Zi have values that
determine the r-th pattern. Of course, when Zi is given, the the value of
Yi is no more random.
We can derive the joint density of Zi, YR

i , `i as:
f (YR
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Model Inference
Due to the presence of latent variables, the maximization of the likeli-
hood cannot be done in “close form”, and we must then use an EM al-
gorithm, which maximizes a lower limit of the log-likelihood: the complete
log-likelihood. We can write the complete log-likelihood as
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• E-step: we compute the expectation of the complete log-likelihood with
respect to the latent data Z and the cluster labels `. For each response
pattern r, we can approximate the value of Zi|`i as the
expected value of the truncated multivariate normals
(using properties of matrix-variate normals), given the
parameters Θk of the assigned cluster.
The latent variable `i can be computed by means of Bayes’ theorem as:
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which would require Monte-Carlo approximation.
• M-step: the parameter updates are given by:
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The E and M step are iterated until convergence of the log-likelihood.

A longitudinal clustMD?
This is the first step of a broader project, aiming at extending this framework
to account for mixed data (continuous, ordinal, nominal, count) in order to
cluster mixed longitudinal dataset.
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