# Clustering Longitudinal Ordinal Data 

F. Amato ${ }^{1}$, J. Jacques ${ }^{1}$

${ }^{1}$ Univ Lyon, Univ Lyon 2, ERIC, Lyon.

## Context

- Longitudinal ordinal data $y_{i, j, t}$ whose levels are coded $\left\{1, \ldots, C_{j}\right\}$ : the observation of the $j$-th variable for the $i$-th unit at time $t$ $(i=1, \ldots, N ; j=1, \ldots, J$ and $t=1, \ldots, T)$,
- We want to cluster units accounting for the temporal behavior
$\bullet \Rightarrow$ Idea: rewrite them in a three-way format and use latent underlying continous matrix-variate distributions!
- We organize our data in a random-matrix form such that:

$$
Y_{i}=\left(\begin{array}{ccccc}
y_{i, 1,1} & \cdots & y_{i, 1, t} & \cdots & y_{i, 1, T} \\
\vdots & \cdots & \vdots & \cdots & \vdots \\
y_{i, j, 1} & \cdots & y_{i, j, t} & \cdots & y_{i, j, T} \\
\vdots & \cdots & \vdots & \cdots & \vdots \\
y_{i, J, 1} & \cdots & y_{i, J, t} & \cdots & y_{i, J, T}
\end{array}\right)
$$

## From continuous...

- Matrix-variate Normal: $Z \sim \mathcal{M N}_{(J \times T)}(M, \Phi, \Sigma)$, where
- $M \in \mathbb{R}^{J \times T}$ is the matrix of means
- $\Phi \in \mathbb{R}^{T \times T}$ is a covariance matrix between the $T$ occasions
$\bullet \Sigma \in \mathbb{R}^{J \times J}$ is the covariance matrix of the $J$ variables
The matrix-normal probability density function (pdf) is given by

$$
\begin{aligned}
& \phi^{(J \times T)}(Z \mid M, \Phi, \Sigma)= \\
& (2 \pi)^{-\frac{T J}{2}}|\Phi|^{-\frac{J}{2}}|\Sigma|^{-\frac{T}{2}} \exp \left\{-\frac{1}{2} \operatorname{tr}\left[\Sigma^{-1}(Z-M) \Phi^{-1}(Z-M)^{\top}\right]\right\}
\end{aligned}
$$

- Mixtures of Matrix-Normals (MMN) were introduced by Viroli [3]

$$
f(Y \mid \boldsymbol{\pi}, \boldsymbol{\Theta})=\sum_{k=1}^{K} \pi_{k} \phi^{(J \times T)}\left(Z \mid M_{k}, \Phi_{k}, \Sigma_{k}\right),
$$

where

- $K$ : number of mixture components
$\bullet \boldsymbol{\pi}=\left\{\pi_{k}\right\}_{k=1}^{K}$ : vector of mixing proportions, $\sum_{k=1}^{K} \pi_{k}=1$
- $\boldsymbol{\Theta}=\left\{\Theta_{k}\right\}_{k=1}^{K}$ : set of component-specific parameters $\Theta_{k}=\left\{M_{k}, \Phi_{k}, \Sigma_{k}\right\}$
$\Longrightarrow$ Advantages: offers a parsimonious and easily interpretable way to include the time dimension in the clustering.


## ...to ordinal data!

In the clustMD framework [2] cross-sectional mixed data are assumed to be all manifestation of underlying multivariate normals, and a Gaussian mixture model operating on the underlying normal variable is used to cluster them.
As for the classical clustMD, we can assume that each observed ordinal matrix $Y$ is indeed the manifestation of a latent random matrix $Z$, which follows a matrix-normal distribution.

$$
Z_{i}=\left(\begin{array}{ccccc}
z_{i, 1,1} & \cdots & z_{i, 1, t} & \cdots & z_{i, 1, T} \\
\vdots & \cdots & \vdots & \cdots & \vdots \\
z_{i, j, 1} & \cdots & z_{i, j, t} & \cdots & z_{i, j, T} \\
\vdots & \cdots & \vdots & \cdots & \vdots \\
z_{i, J, 1} & \cdots & z_{i, J, t} & \cdots & z_{i, J, T}
\end{array}\right) \longrightarrow Y_{i}=\left(\begin{array}{ccccc}
y_{i, 1,1} & \cdots & y_{i, 1, t} & \cdots & y_{i, 1, T} \\
\vdots & \cdots & \vdots & \cdots & \vdots \\
y_{i, j, 1} & \cdots & y_{i, j, t} & \cdots & y_{i, j, T} \\
\vdots & \cdots & \vdots & \cdots & \vdots \\
y_{i, J, 1} & \cdots & y_{i, J, t} & \cdots & y_{i, J, T}
\end{array}\right)
$$

To map from $Y_{i}$ to $Z_{i}$, let $\gamma_{j}$ denote a $C_{j}+1$-dimensional vector of thresholds that partition the space of the underlying latent continuous variable for the $j$-th ordinal variable. Let the threshold parameters be constrained such that $-\infty=\gamma_{j, 0} \leq \gamma_{j, 1} \leq \ldots \leq \gamma_{j, C_{j}}=\infty$. If the latent $z_{i, j, t}$ is such that $\gamma_{j, c-1}<z_{i, j, t}<\gamma_{j, c}$ then the observed ordinal response, $y_{i, j, t}=c$.

A key point is of course the choice of the thresholds $\gamma=\left\{\gamma_{j}\right\}_{j=1}^{J}$. In [1], thresholds are fixed in advance to avoid identifiability and computational complexity issues. Also in [2], for ordinal variables they are fixed such that $\gamma_{j, c}=\varphi^{-1}\left(\delta_{c}\right)$, where $\delta_{c}$ is the proportion of variable $J$ which are less than or equal to level $c$ and $\varphi$ is the normal cumulative distribution function.

## Model

The model relies on the following hypotheses:

- $\boldsymbol{\ell}_{i} \in\{0,1\}^{K}$ is the latent allocation variable such that $\ell_{i k}=1$ if the $i$-th unit belongs to the $k$-th cluster.
- $\mathbf{Y}_{i}^{R}=\left(Y_{i 1}^{R}, \ldots, Y_{i R}^{R}\right) \in \mathbb{R}^{R}$ indicate the observed response pattern for the $i$-th unit.
- $\boldsymbol{\ell}_{i} \sim \mathcal{M}(1, \boldsymbol{\pi}), \boldsymbol{\pi}=\left(\pi_{1}, \ldots, \pi_{K}\right)$
- $\mathbf{Z}_{i} \mid \ell_{i k}=1 \sim \mathcal{M} \mathcal{N}_{(J \times T)}\left(\mathbf{Z}_{i} \mid \Theta_{k}\right), \Theta_{k}=\left\{M_{k}, \Phi_{k}, \Sigma_{k}\right\}$
- $\mathbf{Y}_{i}^{R} \mid \mathbf{Z}_{i}, \boldsymbol{\ell}_{i k}=1 \sim \mathcal{M}\left(1, \boldsymbol{\xi}_{i}^{R}\right), \boldsymbol{\xi}_{i}^{R}=\left(\mathbf{1}_{\Omega_{1}}\left(\mathbf{Z}_{i}\right), \ldots, \mathbf{1}_{\Omega_{R}}\left(\mathbf{Z}_{i}\right)\right)$
where $\mathcal{M}$ indicate the multinomial distribution, $\Omega_{r}$ is the portion of the $J \times T$-space which determines the the $r$-th pattern, and $\mathbf{1}_{\Omega_{r}}\left(\mathbf{Z}_{i}\right)$ is the indicator function that equals 1 when the elements in $\mathbf{Z}_{i}$ have values that determine the $r$-th pattern. Of course, when $\mathbf{Z}_{i}$ is given, the the value of $\mathbf{Y}_{i}$ is no more random.
We can derive the joint density of $\mathbf{Z}_{i}, \mathbf{Y}_{i}^{R}, \boldsymbol{\ell}_{i}$ as:

$$
f\left(\mathbf{Y}_{i}^{R}, \mathbf{Z}_{i}, \boldsymbol{\ell}_{i}\right)=f\left(\mathbf{Y}_{i}^{R} \mid \mathbf{Z}_{i}, \boldsymbol{\ell}_{i}\right) f\left(\mathbf{Z}_{i} \mid \ell_{i}\right) f\left(\boldsymbol{\ell}_{i}\right)
$$

where:
$f\left(\boldsymbol{\ell}_{i}\right)=\prod_{k=1}^{K} \pi_{k}^{\ell_{i k}}, f\left(\mathbf{Z}_{i} \mid \boldsymbol{\ell}_{i}\right)=\prod_{k=1}^{K}\left[\phi^{(J \times T)}\left(Z_{i} \mid \Theta_{k}\right)\right]^{\ell_{i k}}, f\left(\mathbf{Y}_{i}^{R} \mid \mathbf{Z}_{i}, \boldsymbol{\ell}_{i}\right)=\prod_{r=1}^{R} \mathbf{1}_{\Omega_{r}}\left(Z_{i}\right)^{Y_{i r}^{R}}$

## Model Inference

Due to the presence of latent variables, the maximization of the likelihood cannot be done in "close form", and we must then use an EM algorithm, which maximizes a lower limit of the log-likelihood: the complete $\log$-likelihood. We can write the complete log-likelihood as

$$
\begin{aligned}
\log \mathcal{L}_{\mathcal{C}}\left(\boldsymbol{\pi}, \boldsymbol{\Theta} \mid \mathbf{Y}^{R}, \mathbf{Z}, \boldsymbol{\ell}\right)=\sum_{i=1}^{N}\left\{\sum_{r=1}^{R} Y_{i r} \mathbf{1}_{\Omega_{r}}\left(Z_{i}\right)+\sum_{k=1}^{K} \ell_{i k}\left[\log \left(\pi_{k}\right)-\frac{T J}{2} \log (2 \pi)\right.\right. \\
\left.\left.\quad-\frac{J}{2} \log \left(\left|\Phi_{k}\right|\right)-\frac{T}{2} \log \left(\left|\Sigma_{k}\right|\right)-\frac{1}{2} \operatorname{tr}\left[\Sigma_{k}^{-1}\left(Z_{i}-M_{k}\right) \Phi_{k}^{-1}\left(Z_{i}-M_{k}\right)^{\top}\right]\right]\right\} .
\end{aligned}
$$

- E-step: we compute the expectation of the complete log-likelihood with respect to the latent data $Z$ and the cluster labels $\ell$. For each response pattern $r$, we can approximate the value of $Z_{i} \mid \ell_{i}$ as the expected value of the truncated multivariate normals (using properties of matrix-variate normals), given the parameters $\Theta_{k}$ of the assigned cluster.
The latent variable $\boldsymbol{\ell}_{i}$ can be computed by means of Bayes' theorem as:

$$
\mathbb{E}\left(\ell_{i k}^{(s)} \mid Y_{i}^{R}=r, \Theta^{(s-1)}, \boldsymbol{\pi}^{(s-1)}\right)=\frac{\pi_{k}^{(s-1)} \int_{\Omega_{r}} f\left(Z \mid \Theta_{k}^{(s-1)}\right) d Z}{\sum_{k=1}^{K} \pi_{k}^{(s-1)} \int_{\Omega_{r}} f\left(Z \mid \Theta_{k}^{(s-1)}\right) d Z},
$$

which would require Monte-Carlo approximation.

- M-step: the parameter updates are given by:

$$
\begin{aligned}
& \hat{\Sigma}_{k}^{(s)}=\frac{\sum_{i=1}^{N} \ell_{i k}^{(s)}\left(Z_{i}-\hat{M}_{k}^{(s)}\right) \hat{\Phi}_{k}^{-1(s-1)}\left(Z_{i}-\hat{M}_{k}^{(s)}\right)^{\top}}{T \sum_{i=1}^{N} \ell_{i k}^{(s)}} \quad, \quad \hat{M}_{k}^{(s)}=\frac{\sum_{i=1}^{N} \ell_{i k}^{(s)} Z_{i}}{\sum_{i=1}^{N} \ell_{i k}^{(s)}} \\
& \hat{\Phi}_{k}^{(s)}=\frac{\sum_{i=1}^{N} \ell_{i k}^{(s)}\left(Z_{i}-\hat{M}_{k}^{(s)}\right)^{\top} \hat{\Sigma}_{k}^{-1(s)}\left(Z_{i}-\hat{M}_{k}^{(s)}\right)}{J \sum_{i=1}^{N} \ell_{i k}^{(s)}} \quad, \quad \hat{\pi}_{k}^{(s)}=\frac{\sum_{i=1}^{N} \ell_{i k}^{(s)}}{N}
\end{aligned}
$$

The E and M step are iterated until convergence of the log-likelihood.

## A longitudinal clustMD?

This is the first step of a broader project, aiming at extending this framework to account for mixed data (continuous, ordinal, nominal, count) in order to cluster mixed longitudinal dataset.

## References

[1] M. Corneli, C. Bouveyron, and P. Latouche. Co-clustering of ordinal data via latent continuous random variables and not missing at random entries. Journal of Computational and Graphical Statistics, 2020. [2] D. McParland and I. C. Gormley. Model based clustering for mixed data: clustmd. Advances in Data Analysis and Classification, 10(2):155-169, 2016
[3] C. Viroli. Finite mixtures of matrix normal distributions for classifying three-way data. Statistics and Computing, 21(4):511-522, 2011.

