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Résumé. Dans les sciences sociales ou la médecine, les études sont souvent basées
sur des questionnaires demandant aux participants d’exprimer des réponses ordonnées
à plusieurs reprises au cours d’une période d’étude. Nous présentons un modèle pour
effectuer un clustering temporel sur ces données. Le modèle repose sur un mélange de
distributions normales à variation matricielle, en tenant compte simultanément des struc-
tures de dépendance temporelle internes et intermédiaires. Un algorithme MC-EM pour
l’estimation du modèle est utilisé. Des applications sur les données synthétiques et réelles
sont présentées.

Mots-clés. clustering. Données ordinal longitudinales. Tenseurs. Modèle de mélange.
Loi gaussienne matricielle.

Abstract. In social sciences or medicine, studies are often based on questionnaires
asking participants to express ordered responses several times over a study period. We
present a model to perform temporal clustering on such data. The model relies on mix-
ture of matrix-variate normal distributions, accounting for the within and between time-
dependence structures simultaneously. A MC-EM algorithm for the model estimation is
used. Applications on synthetic and real data are presented.

Keywords. Clustering. Ordinal longitudinal data. Three-way data. Mixture models.
Matrix-variate Gaussians.

1 Context

In many areas of humanities and social sciences, the studies are based on questionnaires
completed by participants several times over the study period. The researchers then
analyse these questionnaires to determine typical behaviours within the studied popula-
tion, being especially interested in their time evolution. Nonetheless, modelling temporal
evolution is far from trivial. The most basic approach consists in performing analyses
independently at each temporal phase, and then trying a posteriori to find links between
these different analyses, by seeking from one phase to the other to find similar or different
typical behaviours. An example is Selosse et al., 2019, clustering of ordinal data for an
application in psychology. The ideal way to cluster these data would be to account for the
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temporal evolution, modelling all the responses to the questionnaires at the same time.
We propose a model-based clustering technique aiming at facilitate such temporal analy-
sis, by grouping together the units behaving similarly in time. Over the decades, research
has produced a vast number of different approaches to clustering. From our prospective,
probabilistic (or model-based) clustering offers the advantage of clearly stating the as-
sumptions behind the clustering algorithm, and allows cluster analysis to benefit from the
inferential framework of statistics to address some of the practical questions arising when
performing clustering: determine the number of clusters, detecting and treating outliers,
assessing uncertainty in the clustering (Bouveyron et al., 2019).

1.1 Related works

An approach to clustering longitudinal data consists in arranging the data in a three-
way format and modelling them through a matrix-variate mixture model. This approach
offers the advantage of accounting for the overall time-behavior, grouping together the
units that have a similar pattern across and within time. While not being new (Basford
et al., 1985), matrix-variate distributions have recently gained attention, and mixtures of
matrix-normals (MMN) have been developed and applied both in a frequentist framework
in Viroli, 2011a and within a Bayesian one by Viroli, 2011b, where it was used to cluster
Italian provinces based on a longitudinal crime-related score. From a frequentist point
of view, these models represent a natural extension of the multivariate normal mixtures
to account for temporal (or even spatial) dependencies, and have the advantage of being
also relatively easy to estimate by means of EM algorithm (a nice short description of
the EM application to MNN is provided in §2.1 of Wang et al., 2020). More recently,
in Gallaugher et al., 2018 and Melnykov et al., 2018, 2019 extensions for non-normal
skewed cases have been proposed and applied. However, matrix-variate models suffer
from over-parametrization that leads to estimation issues. To overcome this issue a more
parsimonious model (Sarkar et al., 2020) and a new R package (Zhu et al., 2021) has
been proposed. Despite their efficacy, up to now these methods have only been applied to
continous data. Our model expands the use to matrix-variate mixtures to ordinal data.

2 Model

Let denote by yi,j,t, i = 1, ..., N ; j = 1, .., J and t = 1, ..., T the observation of the j-th
variable for the i-th unit at time t, that is: imagine to observe N units and measuring J
different ordinal variables T times throughout the course of the study. Let us reorganize
our data in a random-matrix form such that Y = {Yi}Ni=1 is a sample of J × T -variate
matrix observations (i.e. Yi = (yi,j,t) ∈ RJ×T ). Then, we can assume that each variable
yi,j,t is the manifestation of an underlying latent variable zi,j,t which follows a Gaussian
distribution, as done in the clustMD model (McParland et al., 2016). At this point, we
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can assume that each observed matrix Yi is indeed the manifestation of a latent random
matrix Zi, which follows a matrix-normal distribution.

Yi =


yi,1,1 · · · yi,1,t · · · yi,1,T
...

. . .
... · · · ...

yi,j,1 · · · yi,j,t · · · yi,j,T
... · · · ...

. . .
...

yi,J,1 · · · yi,J,t · · · yi,J,T

←− Zi =


zi,1,1 · · · zi,1,t · · · zi,1,T
...

. . .
... · · · ...

zi,j,1 · · · zi,j,t · · · zi,j,T
... · · · ...

. . .
...

zi,J,1 · · · zi,J,t · · · zi,J,T


To map from Yi to Zi, let γj denote a Cj+1-dimensional vector of thresholds that par-
tition the real line for the j-th ordinal variable that has Cj levels and let the threshold
parameters be constrained such that −∞ = γj,0 ≤ γj,1 ≤ ... ≤ γj,Cj

= ∞. If the latent
zi,j,t is such that γj,c1 < zi,j,t < γj,c then the observed ordinal response, yi,j,t = c.

So, by assuming that each Zi follows a matrix-normal distribution, we can then cluster
our data by means of finite Mixture of Matrix-Normals (MMN) (Viroli, 2011a). Indeed,
let Zi ∼ MN (J×T )(M,Φ,Σ), where M ∈ RJ×T is the matrix of means, Φ ∈ RT×T is a
covariance matrix containing the variances and covariances between the T occasions or
times and Σ ∈ RJ×J is the covariance matrix containing the variance and covariances of
the J variables. The matrix-normal probability density function (pdf) is given by

f(Z|M,Φ,Σ) = (2π)−
TJ
2 |Φ|−

J
2 |Σ|−

T
2 exp

{
−1

2
tr[Σ−1(Z −M)Φ−1(Z −M)⊺]

}
. (1)

The matrix-normal distribution represents a natural extension of the multivariate normal
distribution, since if Z ∼ MN (J×T )(M,Φ,Σ), then vec(Z) ∼ MVN JT (vec(M),Φ ⊗ Σ),
where vec(.) is the vectorization operator and ⊗ denotes the Kronecker product. Then,
the mean and the variance of the matrix-normal distribution are:

E(vec(Z)|M,Φ,Σ) = vec(M) and V(vec(Z)|M,Φ,Σ) = Φ⊗ Σ. (2)

Being a special case of the multivariate normal distribution, the matrix-normal distribu-
tion shares the same various properties, like, for instance, closure under marginalization,
conditioning and linear transformations (Gupta et al., 2000). The separability condition
of the covariance matrix has the twofold advantage of allowing the modeling of the tem-
poral pattern of interest directly on the covariance matrix Φ and of representing a more
parsimonious solution than that of the unrestricted Φ⊗ Σ.
The pdf of the MMN model is given by

f(Z|π,Θ) =
K∑
k=1

πkϕ
(J×T )(Z|Mk,Φk,Σk),
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where ϕ(J×T ) represents the density function of a J×T -dimensional matrix-variate normal,
K is the number of mixture components, π = {πk}Kk=1 is the vector of mixing proportions,
subject to constraint

∑K
k=1 πk = 1 and Θ = {Θk}Kk=1 is the set of component-specific

parameters with Θk = {Mk,Φk,Σk}.
In addition to Z, we introduce a latent binary variable that indicate whether the unit i
belongs to the k-th cluster, ℓi = (ℓi1, ..., ℓiK), such that ℓik = 1 if the i-th unit belongs
to the k-th cluster. Let the binary vector YR

i = (Y R
i1 , ..., Y

R
iR) of length R indicate the

observed response patter for the i-th unit, such that if the r-th pattern is observed then
Y R
ir = 1 and any other entry in the vector equals zero. We can derive the joint density of

Zi,Y
R
i , ℓi as:

f(YR
i ,Zi, ℓi) = f(YR

i |Zi, ℓi)f(Zi|ℓi)f(ℓi).

Assuming that:

ℓi ∼M(1,π), π = (π1, ..., πK)

Zi|ℓik = 1 ∼MN (J×T )(Zi|Θk), Θk = {Mk,Φk,Σk},
YR

i |Zi, ℓik = 1 ∼M(1, ξRi ), ξ
R
i = (1Ω1(Zi), . . . ,1ΩR

(Zi))

we get:

f(ℓi) =
K∏
k=1

πℓik
k , f(Zi|ℓi) =

K∏
k=1

[
ϕ(J×T )(Zi|Θk)

]ℓik
, f(YR

i |Zi, ℓi) =
R∏

r=1

1Ωr(Zi)
Y R
ir ,

whereM indicate the multinomial distribution and 1Ωr(Zi) is the indicator function that
equals 1 when the elements in Zi have values that determine the r-th pattern: one can
imagine Ωr as a J×T matrix whose elements are the indicator functions of the thresholds
linked to the r-th pattern. Of course, when Zi is given, the the value of Yi is no more
random.

3 Estimation

A key point is of course the choice of the thresholds γ = {γj}Jj=1. In Corneli et al., 2020,
thresholds are fixed in advance to avoid identifiability and computational complexity is-
sues. While this can be a starting point in the estimation process, our model aims at
treating them as parameters and estimating them, as in McParland et al., 2013, 2016.

If the thresholds are assumed to be fixed in advance, the estimation process clearly sim-
plifies. To estimate the model, since we do not observe neither Z nor ℓ, we resort to the
EM algorithm (Dempster et al., 1977). The complete log-likelihood can be then written
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as

logL(π,Θ|YR,Z, ℓ) ∝
N∑
i=1

{
R∑

r=1

Yir1Ωr(Zi)+
K∑
k=1

ℓik

[
log(πk)−

TJ

2
log(2π)−J

2
log(|Φk|)−

T

2
log(|Σk|)−

1

2
tr[Σ−1

k (Zi −Mk)Φ
−1
k (Zi −Mk)

⊺]

]}
The expectation step (E-step) of the EM algorithm consists of computing the expectation
of the complete log-likelihood with respect to the latent data Z and the cluster labels ℓ.
In the first step we attempt to estimate the latent variables. For each response pattern r,
we can approximate the value of Zi|ℓi as the expected value of the truncated multivariate
normal (using (2)), given the parameters Θk of the assigned cluster. The latent variable
ℓ can be computed by means of Bayes’theorem as:

E(ℓik|Y R
i = r,Θ,π) =

πk

∫
Ωr

f(Z|Θk)dZ∑K
k=1 πk

∫
Ωr

f(Z|Θk)dZ
,

which requires Monte-Carlo approximation on the multivariate reparametrization. By
taking the first derivatives of the log-likelihood, the M-step goes by:

π̂k =

∑N
i=1 ℓik
N

, M̂k =

∑N
i=1 ℓikZi∑N
i=1 ℓik

Φ̂k =

∑N
i=1 ℓik(Zi − M̂k)

⊺Σ̂−1
k (Zi − M̂k)

J
∑N

i=1 ℓik
, Σ̂k =

∑N
i=1 ℓik(Zi − M̂k)Φ̂

−1
k (Zi − M̂k)

⊺

T
∑N

i=1 ℓik

4 Conclusions

Mixture of matrix-variate normal distributions can be an efficient way to cluster longi-
tudinal continuous data. Assuming that ordinal variables is a discretization of a latent
continuous variable allows us to extend the use of these MMN to ordinal variables. Nu-
merical study on synthetic data sets as well as real data application concerning diet choice
during the pandemic (François-Lecompte et al., 2020) will be presented.
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