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Like all areas of economic activity, public housing is impacted by the rise of big data. While Business Intelligence and Data Science analyses are more or less mastered by social landlords, combining them inside a shared environment is still a challenge. Moreover, processing big data, such as geographical open data that sometimes exceed the capacity of traditional tools, raises a second issue. To face these problems, we propose to use a data lake, a system in which data of any type can be stored and from which various analyses can be performed. In this paper, we present a real use case on public housing that fueled our motivation to introduce a data lake. We also propose a data lake framework that is versatile enough to meet the challenges induced by the use case. Finally, we present HOUDAL, an implementation of a data lake based on our framework, which is operational and used by a social landlord.

INTRODUCTION

In the public housing sector, the use of data allows social landlords to improve the management of dwellings, as well as to better understand tenants. Many use cases have already been dealt with in this context [START_REF] Scholly | Business intelligence & analytics applied to public housing[END_REF]. Through Business Intelligence (BI), data are organized within a data warehouse, and then provide decision-makers (company managers, management controllers, etc.) with dashboards enabling them to manage their activity. BI analyses consist of "looking back" to manage one's business [START_REF] Watson | The current state of business intelligence[END_REF]. Data Science methods applied to public housing can be used for descriptive analyses, such as identifying groups of tenants or dwellings, but also for predictive analyses, for example, to predict non-payment or vacancy of a dwelling. These analyses allow a better understanding of one's activity by "looking forward" [START_REF] Mortenson | Operational research from taylorism to terabytes: A research agenda for the analytics age[END_REF].

However, during the past ten years, the big data revolution have changed the way economic sectors extract knowledge from data [START_REF] Gandomi | Beyond the hype: Big data concepts, methods, and analytics[END_REF]Haider, 2015, Assunc ¸ão et al., 2015], and public housing is no exception. New, often unstructured, data are emerging and can be exploited. This is particularly the case with telephone calls (tenant complaints), or social networks. Open data are also increasingly in fashion, especially geographical data, from which it is possible to obtain information on schools, services, or the employment rate by geographic sector, for example [START_REF] Gandomi | Beyond the hype: Big data concepts, methods, and analytics[END_REF]Haider, 2015, Chen et al., 2014]. All this raises new challenges to be addressed.

The use of Data Science methods on a company's data is called Business Analytics (BA) [START_REF] Chen | Business intelligence and analytics: from big data to big impact[END_REF]. Although Data Science methods used have been around for a long time, the democratization of BA is quite recent, so its definition remains relatively unclear. Some authors believe that BA is an evolution of BI and tends to replace it [START_REF] Mortenson | Operational research from taylorism to terabytes: A research agenda for the analytics age[END_REF], while others consider that BI and BA complement each other and form a whole called Business Intelligence & Analytics (BI&A) [START_REF] Chen | Business intelligence and analytics: from big data to big impact[END_REF]. It is the latter position that we prefer. But instead of using the term Business Intelligence & Analytics, we prefer to introduce the notion of Data Intelligence, which we define as "carrying out analyses, both simple and advanced, on all types of data, whether big data or not".

Authors have proposed architectures to combine BI and BA in the general context of big data. [START_REF] Baars | From data warehouses to analytical atoms-the internet of things as a centrifugal force in business intelligence and analytics[END_REF] propose the concept of analytical atoms, which they see as small, ready-to-use, autonomous data warehouses. The interest of this notion lies in the combination of analytical atoms, to form what they call "virtual data warehouses". [START_REF] Gröger | Building an industry 4.0 analytics platform[END_REF] offers a fairly general data analysis platform, based on the Lambda architecture, in which both batch and stream data can be processed in their respective layers. We believe these proposals make sense from the perspective of combining BI and BA. The authors propose architectures to capture data in various formats, with the possibility of processing them through different analyses.

These proposals have similarities with the notion of data lake, where a data lake is a system in which it is possible to store data of any type, without a predefined schema, and from which various analyses can be performed [START_REF] Sawadogo | Metadata systems for data lakes: models and features[END_REF]. In the absence of a schema, the use of metadata is essential in order to exploit the data lake. Without an efficient metadata system, a data lake becomes unusable, and is called a data swamp [START_REF] Miloslavskaya | Big Data, Fast Data and Data Lake Concepts[END_REF]. The notion of data lake is still relatively new and much work is in progress, both on the theoretical definition of metadata and on the concrete implementation of a data lake. In addition, the metadata system greatly influences the data lake's framework, which is also a matter of debate.

In our case, we rely on a real business use case that highlights the problems inherent to achieving Data Intelligence without the right tools. A project aiming to marry BI and BA within the same scope was carried out, but by using traditional tools. A number of limitations have been reached, especially regarding the storage of various data and the analyses of these data by different methods. This allows us to show that the use of a data lake could efficiently address these issues.

In this paper, we propose to use our metadata system named MEDAL [START_REF] Sawadogo | Metadata systems for data lakes: models and features[END_REF], but reworked, in order to best meet the requirements of our use case on public housing. With this metadata system, we also propose a framework for data lakes that we consider to be versatile and well suited for Data Intelligence. By using this framework, users can integrate all types of data and run various kinds of analyses without giving the data lake a predefined shape. Moreover, we introduce HOUDAL (public HOUsing DAta Lake), a data lake implementation based on our framework and adapted to our use case. This implementation allows users to create and manage metadata in the data lake and to interact with data stored in the lake.

This paper is organized as follows. Section 2 presents the state of the art on data lakes. Section 3 explains our use case about public housing. Section 4 presents our data lake framework. Section 5 details HOUDAL, the implementation of our proposal. Finally, Section 6 concludes the document by present-ing the perspectives of evolution and future work.

STATE OF THE ART

The term data lake was initially proposed by [START_REF] Dixon | Pentaho, Hadoop, and Data Lakes[END_REF]. It defined a vast repository of raw and heterogeneous data structures fed by external data sources, and from which various analytical operations can be performed. After Dixon's proposal, the term data lake was quickly associated with specialized technologies for massive data processing such as Apache Hadoop, with low storage cost and better ability to handle large volumes of data. However, this view is less and less in vogue in the literature as most research teams have focused on Dixon's definition [START_REF] Miloslavskaya | Big Data, Fast Data and Data Lake Concepts[END_REF]Tolstoy, 2016, Gandomi and[START_REF] Gandomi | Beyond the hype: Big data concepts, methods, and analytics[END_REF].

Several other proposals have been made to define a data lake [START_REF] Miloslavskaya | Big Data, Fast Data and Data Lake Concepts[END_REF]. Two main characteristics stand out: the variety of data and the absence of a schema. This indicates that a data lake can integrate all types of data and that it works via a schema-on-read approach (i.e. data are stored without a predefined schema). This second property contrast with the schema-on-write approach of data warehouses, where data are transformed before insertion to match the schema defined upstream.

The most consensual and complete definition is proposed by [START_REF] Madera | The next information architecture evolution: the data lake wave[END_REF]. However, we amended this definition by discussing some elements [START_REF] Sawadogo | Metadata systems for data lakes: models and features[END_REF]. From our perspective, a data lake is "an evolutionary system (in terms of scaling) of storage and analysis of data of all types, in their native format, used mainly by data specialists (statisticians, data scientists, data analysts) for knowledge extraction. Characteristics of a data lake include: 1) a metadata catalog that ensures data quality; 2) a data governance policy and tools; 3) openness to all types of users; 4) integration of all types of data; 5) logical and physical organization; 6) scalability".

Besides the definition of the data lake concept, a lot of work has been carried out on the framework of a data lake [START_REF] Maccioni | Crossing the finish line faster when paddling the data lake with KAYAK[END_REF]Torlone, 2017, Hai et al., 2016]. Since the definition of the concept is not yet totally consensual, and proposals of frameworks have emerged in parallel to the concept, there are several visions [START_REF] Hellerstein | Ground: A Data Context Service[END_REF][START_REF] Halevy | Goods: Organizing Google's Datasets[END_REF]. It should be noted that the framework of a data lake is intimately conditioned by its metadata system.

Among framework proposals, some consider the data lake only as an economical storage space for massive data [START_REF] Miloslavskaya | Big Data, Fast Data and Data Lake Concepts[END_REF]. In this vision, the architectures are essentially based on technologies such as Apache Hadoop, Azure Blob Storage, or Amazon S3. We prefer to set aside this view as is does not match our definition of a data lake.

A first framework, introduced in particular by [START_REF] Inmon | Data Lake Architecture: Designing the Data Lake and avoiding the garbage dump[END_REF], proposes an organization in data ponds. The idea is to partition data in 3 ponds according to their format: structured, semi-structured and unstructured. There exists variations, with for example a raw data pond, an archived data pond, or a division of the unstructured data pond by sub-formats (text data pond, audio data pond, etc.) [Sawadogo et al., 2019a].

Other frameworks prefer to divide the data lake into zones [START_REF] Ravat | Metadata management for data lakes[END_REF]. The zones refer to the "refinement level" of data: raw data (i.e., as ingested in the lake, data remain in the raw data zone, while reworked data are placed in the processed data zone, and ready-to-use data are in the access data zone). Other authors refer to these zones as bronze, silver, and gold, respectively [START_REF] Heintz | Productionizing Machine Learning with Delta Lake[END_REF].

Finally, authors and we propose a framework based on data semantics [START_REF] Diamantini | A New Metadata Model to Uniformly Handle Heterogeneous Data Lake Sources[END_REF][START_REF] Sawadogo | Metadata systems for data lakes: models and features[END_REF]. Here, the idea is to group data according to their meaning. The authors and we introduce the term object, designating a homogeneous set of information. An object can group several versions and representations of the same set of data, to track whether data have been updated or transformed by an user. Moreover, by crossing data from different objects, it generates a new object, with different semantics.

While these frameworks are relevant and address the issues identified by their authors, they impose a predefined shape to the data lake (e.g., by organizing data according to their structure, refinement or semantics). We believe this is contrary to the schema-onread approach of data lakes.

Let's consider the following example. A company having a lot of textual documents is interested in extracting structured descriptors (e.g., bag of words or term-frequency vector) for computing documents similarity. To this end, both textual documents and descriptors are stored in a data lake. Let us distinguish between the three cases listed above. If the company organizes its data lake through:

• Data structure, and thus creates data ponds within the lake: textual documents are in the unstructured data pond, while descriptors are in the structured data pond;

• Data refinement, and thus creates zones within the lake: textual documents are in the raw data zone, while descriptors are in another zone (for example, process data or access data);

• Data semantics, and thus creates data objects within the lake: the descriptors remain in the same object, meaning that textual documents and their descriptors are in the same object. We observe from the example, that depending on the framework chosen for the data lake, data are put in different areas inside the data lake. As a result, the lake's usage will be different according to the framework chosen. We believe the proposals are too specific and thus we propose a more general framework that avoids giving a predefined shape to the data lake. This will be detailed in Section 4.

PUBLIC HOUSING USE CASE

The use case, anchored in the business issue of public housing, was initially carried out in a Data Intelligence consulting company without using a data lake. Named Projet Etat Des Lieux (EDL) (i.e., "inventory of fixtures project" in English), the goal is to study a social landlord's data in order to provide two predictions regarding the departure of tenants.

The first study seeks to predict whether the equipment of a dwelling might be degraded when a tenant leaves, and thus planning an exit visit or not. Indeed, it is frequent that an agent of the landlord travels to carry out the exit visit, but if the dwelling is in good condition, no compensation will be requested from the outgoing tenant. If this is the case, the visit is "useless" and the landlord loses money, since an agent's travel is not cost-free. The objective of this prediction is thus to identify in advance the dwellings that present a high probability of having degraded equipment for which the landlord could ask the outgoing tenant for an indemnity, thus making the agent's visit useful and profitable.

A second similar study was conducted, to predict whether any repairs to the dwelling will be required at the tenant's departure before it can be rented again. The objective of this prediction is to reduce dwelling's vacancy period and be able to anticipate the works by ordering them before the tenant's departure. Indeed, if the observation is made on departure of the tenant that works need to be done, the housing cannot be re-rented immediately. It is necessary thus to count the duration of the order of the works and the time of these works. If the works are ordered in advance, they can begin as soon as the tenant leaves, which reduces the period of vacancy of the dwelling and thus reduce the losses of the landlord.

In parallel to these predictive analyses, data are inserted into a reporting tool, in which a small data warehouse is modeled through a star model, in order to conduct BI analyses. Once the forecasting is done, the results are also inserted into the dashboard, to combine them with the star model and return it to the landlord. With this dashboard, the landlord can easily use the results of the two predictions and thus better visualize the dwellings presenting risks in terms of damaged equipment or works to be planned when the tenant leaves. also have very little information about potential redundancies between data and treatments, the information is limited to file names or comments in the code. This would not be a problem when using a data lake, since data lineage is recorded within metadata. Skills transfer. Finally, the three problems mentioned above make it difficult, without the help of the data specialists who actively took part in the project, to understand the progress of the project, to know what data have been exploited, by what, for what purpose, and so on. In our case, it took several explanatory meetings with the different actors of the project in order to have a clear and precise vision of what was done in the project, whether in a detailed way (file by file) or in a more general way (goals).

If the project were conducted within a data lake, merely exploring the metadata would have avoided these time-consuming and ultimately not useful meetings. The use of a data lake makes it possible to handle these issues, which are difficult to manage with conventional tools. Because of this, we consider relevant the use of a data lake for this type of Data Intelligence projects.

FRAMEWORK FOR DATA LAKES

In this Section, we now detail our approach to the establishment of the data lake, by presenting the metadata system and the framework of the data lake.

Metadata system

The metadata system is the keystone of a data lake, and guarantees its proper functioning. In the absence of an effective metadata system, the data lake becomes unusable and is then referred to as a data swamp. Several proposals have been made for the metadata system of a data lake. As discussed in Section 2, the metadata system greatly influences the framework of the data lake. Thus, the choice of the metadata system is crucial, and the use case we are dealing with will also influence this decision.

As mentioned in Section 3, our use case mostly concerns structured data, which are then reworked through various data wrangling operations. However, reworked data often end up being stored in not very common formats, such as .RData or .pkl files. These unconventional formats are considered as unstructured data by most tools, because the files can only be exploited by the right tools (in this case, R for .RData files and Python for .pkl files). We therefore consider that an approach based on data structure, with the implementation of data ponds, is not relevant in our case, since the variety of data formats may create ambiguities.

As far as the zones are concerned, source data in their original format (.csv) would fill the raw data zone, and the final dashboard would be in the access data zone. These two zones would be sparingly filled compared to the process data zone, which would contain most of the data, with multiple formats. Thus, we believe that distinguishing data according only to their degree of refinement is not the best idea in our use case. Ultimately, this leaves us with the option of using a framework based on data semantics.

We conducted a study on metadata systems, identifying 6 key functionalities that the metadata system of a data lake must be able to manage in order to overcome the problems associated with big data [START_REF] Sawadogo | Metadata systems for data lakes: models and features[END_REF]. This study showed that apart from our metadata system, namely MEDAL, no other system offers the 6 key functionalities, the most complete systems implementing only 5 of the functionalities. Moreover, MEDAL is a metadata system based on data semantics, which best suits our constraints. Thus, we consider that MEDAL is the most relevant metadata system to use for our data lake.

MEDAL is based on the concept of object, which designates a set of homogeneous information, as well as a metadata typology in three categories: intraobject, inter-object and global metadata. Intra-object metadata refer to metadata associated with a given object, while inter-object metadata are about relationships between objects, and global metadata add more context to all the data lake's metadata [START_REF] Sawadogo | Metadata systems for data lakes: models and features[END_REF].

For our data lake, however, we have reworked MEDAL. The main change lies in the introduction of three main concepts, that generalizes some of MEDAL's. The first concept is data entity, that generalizes versions and representations of an object in the sense of MEDAL. A data entity can represent a spreadsheet file, an image, a database table, and so on.

The second concept is grouping, which is a set of groups, and data entities can be gathered into groups. For example, we can reproduce the object notion of MEDAL, by creating a grouping "semantic object", each group of this grouping being an object in the sense of MEDAL. Note that it is possible to have several groupings, thus enabling, among other things, to gather data entities according to their structure or zone if such groupings are needed. Thanks to this, it becomes possible to reproduce classic frameworks as presented in Section 2.

Lastly, the third concept is process, which generalizes the MEDAL's notions of transformation, update and parenthood relationship. It refers to any transformation applied to a set of data entities and that generates a new set of data entities. With processes, data lineage can be tracked, allowing the data processing chain to be monitored. A process can represent a script or a manual operation made by an user.

Let's illustrate with an example. A CSV file is stored in the data lake, thus creating a data entity in the metadata system. This file is then processed by a data cleansing script: a second file with cleaned data is generated, and also stored in the data lake. Thus, a second data entity is also created, as well as a process representing the script. The two data entities are connected by this process. Besides, if a grouping on zones is created, then the first data entity is in the "raw data zone" group, while the second one belongs to the "processed data zone" group.

For further reading, a complete presentation of this evolution of MEDAL, named goldMEDAL, was the subject of additional work [START_REF] Scholly | Coining goldmedal: A new contribution to data lake generic metadata modeling[END_REF].

Framework

A data lake, in its simplest form, is composed of two main parts: the data storage area, which can store any type of data, and the metadata system, that describes data stored in the lake and help users navigate inside the data lake. However, to ease the user experience, we believe that it is relevant add two other layers, concerning respectively data ingestion and data analysis.

As discussed before, a data lake can store any type of data, in its raw format. But to do so, an efficient metadata system is mandatory. However, if users have to enter all metadata manually, even the most efficient metadata system can become very tedious to use. This is where the data ingestion layer comes into play: its goal is to facilitate metadata creation by automatically generating as much metadata as possible, allowing users to quickly validate or invalidate metadata and move on.

Data stored in the lake are not only meant to be stored, but also analyzed. All types of data analysis can be considered, but since our final goal is to combine BI and BA within Data Intelligence, we focus on the presence of BI and BA analysis. Among these analyses, we are particularly interested in the creation of "advanced indicators" through BA methods (for example with machine learning), which then enrich BI analyses, whether at the data warehouse level or directly in dashboards. To illustrate the notion of advanced indicator, our use case is a perfect example: once predictions are made, they are recorded in the BI dashboard, and cross-referenced with data in the star model. This gives us an example of BA analyses that enrich BI analyses. It is important to note that since the data lake can contain reworked data, it can also contain a data warehouse and/or dashboards.

Our proposal of a data lake's framework combines data ingestion, storage, analysis, and the metadata system. Firstly, data are extracted from sources, and go through the ingestion layer. There, metadata are created and stored in the metadata system, while data are saved in the storage area. Then, users can browse metadata to find useful data, and run either BI or BA analyses on them thanks to the data analysis layer. In the end, if an analysis generates new data, it is possible to store it back into the data lake: in this case, data go through the ingestion layer, in order to create metadata, and so on. This is referred to as "back-feeding" the data lake.

The schema-on-read property of a data lake implies that the data schema is specified at the query. That is why data lakes operate in Extract -Load -Transform (ELT) mode, which is opposed to the Extract -Transform -Load (ETL) mode typical of data warehouses, where data are transformed before being loaded. In the data lake, data are not transformed before it is stored, but only at query time.

In our case, to best describe our framework, we prefer to say that the data lake works in EDLT(L):

• Extract : data are extracted from sources ;

• Describe : to-be-inserted data are described by metadata ;

• Load : data are stored in the data lake, without any modification ;

• Transform : when queried by the user, data are modified as required ;

• (Re)Load : if the user wishes to save the result of his analysis, he can "back-feed" the lake and save the transformed data, along with the input of adequate metadata.

By adding the Describe step, we emphasize the importance of metadata, and that it must be generated before storing the data in the data lake. Saving data in the data lake without capturing the associated metadata is a significant risk of losing track of them and quickly turning the lake into an unusable swamp. Furthermore, with the (Re)Load step, we insist on the fact that the data lake must be the central piece of the whole data analysis chain. Of course, data are first extracted from sources outside the lake; however, when the user reworks data from the lake, whether through BI or BA analyses, the results may have to be stored in the lake. Thus, for these reworked data, the framework "restarts" at the Describe step. Figure 1 summarizes this approach in a schematic way.

To illustrate the framework, we refer to the use case. First, data sent by the landlord are ingested into the data lake. Data scientists then process data, and backfeed the data lake with these reworked data, as well as the transformation scripts. In the end, the two predictions are made, and then exploited in a BI dashboard. With all this, we have a perfect example of the creation and exploitation of advanced indicators, as presented before.

Placing the data lake as the central piece of the knowledge extraction from data chain gives us several advantages. Firstly, it is one of the fundamental properties of the lake, i.e. the ability to store of all types of data in their native format, that benefits us. Indeed, we store in the lake both raw data sent by the landlord, reworked data, predictive models, dashboards, but also project tracking documents. This centralized storage of all data also means data are not scattered and environments are not multiplied. This was a major issue for our use case without the data lake, and it is quite a common problem, whether in BI or BA projects: the data as well as the processes can be stored locally on a computer, or on the company server, or on a cloud, or to be retrieved directly on a client's virtual computer, and so on.

An additional advantage is that metadata must be entered directly when data are inserted into the data lake. Indeed, whether for BI or BA projects, there are several ways to generate post-project documentation. For example, in BI, DataGalaxy1 provides an ergonomic data catalog to manage data governance. On the other hand, having to maintain this documentation after the project has been set up is an expensive, error-prone task, in addition to being tedious, and therefore rarely done properly. With the data lake, data governance is done upstream : we can define this as "on-write data governance", and there is little need to maintain this information afterwards.

HOUDAL DATA LAKE

After explaining in detail the framework of our data lake, we now present how we implemented HOUDAL to address the issues of our use case, and to validate the efficiency of our framework. 

Selection of technologies

Although the concept of a data lake is still relatively recent, and there is no consensus yet on the architecture that a data lake should have, there are already several tools and technologies available to implement this type of solution. We therefore conducted a study to identify which tools could be used to meet the requirements of our use case and remain the most faithful to our vision of the data lake and its framework. We have identified four possible ways to implement the data lake.

All-in-one tool. The first is to use all-in-one tools, such as Apache Kylo 2 . This is defined as "a selfservice data lake management software platform for data acquisition and preparation with integrated metadata management". Both data storage and analysis are handled with Kylo, as well as the metadata system. However, this option was abandoned for three main reasons. First of all, the metadata system proposed by Kylo is not exhaustive enough to let us implement our goldMEDAL-based metadata system. Also, Kylo is mainly oriented to manage structured data. Although we mainly have source data in .csv format in our use case, this becomes problematic when dealing with files of various formats. The last reason concerns data analysis: the data preparation part of the tool is certainly interesting, especially in our case, but as far as more advanced analyses (BI and BA) are concerned, we would have had to manage them outside 2 https://kylo.io/ Kylo. This would have had several unattractive consequences, such as managing metadata outside Kylo. Proprietary clouds. The second option considered is to use proprietary clouds, such as Microsoft's Azure 3 or Amazon's AWS 4 . Both have the main advantage of offering a wide range of services, allowing one to ingest all types of data, manage metadata, and conduct all types of data analysis. Users can stay in the same ecosystem for all their needs, and no longer have to worry about deploying the proper server. However, having everything in the cloud, and services for everything, also turns out to be a disadvantage. Firstly, if developments have already been made, then they have to be migrated to the appropriate services within the cloud, which can be very time-consuming. Besides, we noticed that these proprietary clouds are not flexible: in particular, the services for metadata management lacked completeness on certain aspects, and we would have liked to be able to make some modifications to them to match our expectations better, but this turned out to be impossible. Finally, proprietary clouds are pay-per-use, which slowed us down for a first proof of concept. However, for future work on larger use cases or with different needs, they might be reconsidered. Hadoop ecosystem. A third option explored is about using an ecosystem from the world of big data open technologies, such as Apache Hadoop 5 . Like pro-prietary clouds, Hadoop comes with its own ecosystem, and a lot of services are available to ingest data, store data (especially with the Hadoop Distributed File System, HDFS), manage the metadata system and run different types of data analysis. In particular, the metadata system Apache Atlas is very interesting, and seems to be complete enough for us to implement our metadata system. Nevertheless, following preliminary tests, this solution was finally not retained. On the one hand, HDFS is suitable for large files, but not for small files, which we have in large quantities in our use case. On the other hand, installing an entire Apache Hadoop ecosystem is a very long, complex process, and requires specific skills, in addition to the need for hardware resources to run the cluster properly. Furthermore, these open source technologies evolve very quickly, and it is necessary to keep a watchful eye on new developments, but also to keep the cluster up to date, which takes time and can sometimes be a complicated task. Finally, in our vision of the data lake, we consider that an Apache ecosystem is welcome when there is a need to manage large amounts of data, but this was not an issue in our use case. Integrating an HDFS storage area into the data lake, as well as some associated services, may however be a very interesting topic for future work. From scratch development. Finally, the last way studied is to develop our data lake from scratch, in other words to take tools and technologies apparently with no direct link and assemble them to form our data lake. Although it is a risky gamble, this is the solution we have chosen, in particular to have as much flexibility as possible in the implementation of the metadata system, but also to remain as faithful as possible to our vision of the data lake. Using already existing technologies and/or being part of an ecosystem meant that we ran the risk of seeing these tools evolve over time, possibly in a direction that might one day no longer suit our vision of the data lake. In addition, developing a system from scratch gives us the possibility to have a more complete control of it and to be able to make it evolve as we wish, according to the future use cases we might have to deal with. Finally, considering the limited volume of data in our use case, using relatively simple technologies was the best choice to make.

Technical architecture

HOUDAL (public HOUsing DAta Lake), our implementation of the data for public housing, is based on a web application. It has two major parts: the frontend, or client part, which we can refer to as the user interface, and the back-end, or server part, which is broken down into various services, namely the API, the metadata system, the data storage, and the user management service. User interface. HOUDAL is operated through a user interface. Users can connect to the interface and then interact with the data lake. They can consult and explore existing metadata, with a search bar among others. Files stored in the lake can be downloaded. In addition, it is also possible for users to create new metadata, but also to add new files to the data lake. For this, a form is available, with which the user uploads the file. During this process, metadata are entered semi-automatically : some information, such as file name, size or format are extracted automatically, while others have to be entered manually by the user, such as a description. Once the file upload has been validated, data are saved in the storage area, and metadata are created. From a technical standpoint, the user interface has been developed in ReactJS. API. Through requests methods, the user interface communicates with an API. For any action made by the user on the interface, it generates a request that is sent to the API. The API then queries the application's various services, such as the metadata system, and returns the results of this query to the interface in response to the user's request. This API has been developed in NodeJS. Moreover, HOUDAL works with an identification system: the user must log in to access the data lake. Besides, some pages of the interface are reserved for users with an administrator role. The information about the users is saved in a Mon-goDB collection. Note that a MongoDB database is not a necessity, and this may change in the future. Metadata system. Since our metadata system is based on goldMEDAL, which has a graph-based representation, we store the data lake's metadata in a Neo4J6 graph database. The database is accessed only by the API, whether to consult existing metadata or to create new ones. Data entities are nodes, and are linked to each other through processes, or connected to groups. Having all the metadata in a single database is an advantage because it simplifies API calls. Storage area. In our case of use, we only deal with files so there is no database to manage (although database data can also be considered as files). This implies that for the storage area of HOUDAL, we did not need anything other than a directory of a conventional file system to store our data. Note however, that this practice, although sufficient in our specific case, is limited and could be problematic in other use cases. This is discussed in more detail in the following subsection.

A screenshot of HOUDAL's management interface is presented in Figure 2. The interface allows users to create different types of metadata. To this end, the different buttons at the top of the screen redirect users to pages containing forms to create metadata. Moreover, the interface provides a search bar, where the user can perform a keyword search in data entities. On the screenshot, the user has searched for the keyword "solicitation". The interface then provides the user with all data entities containing this keyword in their file name or description.

Note that the screenshot of Figure 2 is only partial and does not show all of the functionalities of the interface, such as downloading data or viewing the groups related to a data entity. In the following paragraph, we discuss how HOUDAL helps us to tackle the issues encountered in our use case.

HOUDAL applied to the use case

In Section 3, we presented how the use case generates issues when using traditional BI and BA tools. We also showed that, from a theoretical standpoint, using a data lake would be a good solution to tackle these problems. In order to validate our proposal, we have tried to replicate in HOUDAL the project carried out without the use of a data lake. Here we discuss what HOUDAL's metadata system looks like when applied to this use case, and how it assists data specialists.

As presented before, HOUDAL's metadata system is based on three main concepts. The different data files that populate the data lake are data entities. They can be either raw data files sent by landlords (often in comma separated value files) or reworked data, sometimes stored in various formats such as .pkl or .RData, for Python and R analyses, respectively. In Neo4J, each data entity has its node labeled :ENTITY and the entity's properties, such as file name or description, are stored in the node's attributes.

Groupings are use for categorizing data entities. With HOUDAL, users can create as many groupings as necessary, and several groups for each grouping. Data entities can be linked to zero, one or several groups for each grouping. In the physical model, groupings are modeled by nodes carrying a :GROUP-ING label. Groups are also nodes, carrying both a :GROUP label and grouping's name as a second label, in order to facilitate querying. A data entity node can be linked to several group nodes. A data entity node (resp. group node) is linked to a group node (resp. grouping node) with an edge labeled with the grouping's name (resp. :GROUPING). With groups and groupings, users can, for example, determine whether it is internal or external data, or the data refinement level (zones), and so on.

Processes reflects the modifications that data may undergo, and are used for tracking data lineage. It can be, for example, a script for transforming or cleaning a data file, i.e., a data entity. In Neo4J, a process is also modeled by a node, labeled :PROCESS. Data entities can be input of the process (for example, raw data sent by the landlord), or output (cleansed data). If a data entity is the input of a process, there is an edge labeled :PROCESS IN from the entity node to the process node. Inversely, an edge labeled :PROCESS OUT from the process node to the entity node is created if a new data entity is generated by the process.

Figure 3 presents a sample of metadata stored in Neo4J. Data entity nodes are colored in red. On both sides of the Figure, a data entity node is highlighted: some of its attributes are depicted at the bottom in grey.

The left-hand side of the Figure gives an example of groups. There are three groupings: a zone grouping, a format grouping and a granularity grouping. Each grouping has its group nodes, colored in green, purple and blue, respectively. Data entity nodes are connected to group nodes with an edge. For example, we can see that the highlighted data entity node (on the left) is a raw .csv file, and the granularity level is "Tenant", meaning that each line corresponds to a tenant. Note that in Neo4J, groupings are also modeled as nodes, but are not represented in this Figure .  An example of process is depicted on the right side of Figure 3. The process node is colored in yellow. We can see that three data entity nodes are the process' input, and three data entity nodes are the process' output, meaning that they are generated by the process.

Limitations and future work

HOUDAL is functional and is currently in advanced testing phase. Several social landlords have shown interest in our work and, although much work remains to be done, discussions are underway to deploy this application to other social landlords over the long term. However, while being functional, it is still a work in progress, and thus has limitations.

The first limitation of HOUDAL is its data storage system. Indeed, considering the use case we have treated, in which there are only files, having a storage system other than a directory was not necessary. On the other hand, in the long term, we would like to be able to offer users the possibility of carrying out BI analyses, which often implies the presence of a data warehouse, and therefore a relational database.

To overcome this problem, we wish to add, at least initially, a relational database in the storage space of the data lake. In order to make it easy for the user to use it, we also wish to propose through the interface a page allowing the user to enter SQL queries, in order to create and fill his databases and tables.

The second limitation arises at the level of filling the data lake with source data. Although this process is currently simple, it remains tedious in the case of a large number of files, and if the data source is not a native file, it forces the user to generate a file from the source. If we take the example of a source being a relational database, the user must extract data from the tables as CSV files and then insert them in the data lake. This adds one more step in the process of storing data into the lake, and we could argue that it "denatures" the source in a certain way.

This is why we wish to open the scope of possibilities concerning the data sources that can feed the data lake. In particular, we want to be able to automate the filling of the lake, and not have to go through the interface, which requires human intervention each time. For this, we want to develop an ETL component (for example, Pentaho Data Integration), as well as a library for a scripting language (for example, Python). With these tools, the user would not use the "extract from file/table" and "insert into file/table" functions anymore, but an "extract from data lake" and "insert into data lake" function.

The data lake can contain data of all types and from all sources. In addition, many users with different profiles can connect to the lake to exploit it. On the other hand, some data may be of a sensitive nature and should only be accessible by a specific category of users. For example, in the case of data concerning Social Housing, if a dataset contains details about the income of tenants or their professional situation, it must be considered sensitive and therefore only accessible by users who have been validated beforehand. In the case of the use we dealt with in the data lake, there was no notion of sensitive data.

For these reasons, we wish to work on this aspect. To this end, we want to introduce the notion of roles and restrictions in the data lake management application. We want the roles to be modular, i.e. to be able to define the roles for a given project, and to associate restrictions to these roles. It is also possible to restrict access to metadata according to a profile : to be able to only consult, to be able to create new metadata, to be able to modify it, and so on.

CONCLUSION

For achieving Data Intelligence in the context of big data, some challenges must be addressed first. One of or proposals is the use of a data lake, in which all types of data are stored, and from which various kinds of analyses can be performed. This is a trendy research topic with several possibilities being explored. Given the constraints of our real-life use case, we drew inspiration from our metadata system based on data semantics, namely MEDAL, to which we made a few modifications to create goldMEDAL. It is based on three main concepts: data entity, grouping and process.

This metadata system allows us to define a frame-work that doesn't give a predefined shape to the data lake. Conventional data lakes operate in ELT; we prefer to add two steps to get an EDLT(L) operating mode.

Step D, for Describe, indicates that metadata are extracted before storing the data in the lake. The optional step L, for (Re)Load, is for analyses conducted on the lake's data, which may generate new reworked data; when this is the case, these data are back-fed into the lake, and go through the Describe step again.

In the context of public housing, we have implemented our framework and we have created HOUDAL, a data lake for public housing. After a review of the different possibilities to carry out this development, we chose to develop a web application from scratch, in order to best fit the requirements of our use case. HOUDAL is composed of a user interface and of an API that queries the various services necessary for the proper functioning of the lake, in particular the data lake storage area and the metadata system.

HOUDAL is showing satisfactory results, but we have many areas for improvement to make it more complete. In particular, we would like to improve the feeding of the data lake by being able to query various sources, but also to simplify the data extraction from the lake, whether through ETL or scripting languages. Finally, we also want to make HOUDAL more robust against GDPR-related problems, which we did not have to deal with in our case of use, but which are nevertheless very common.

One of HOUDAL's long-term objectives is to allow the study of a social landlord's patrimony, and more precisely the attractiveness of its dwellings. This is indeed a key issue for social landlords. In the past, qualitative studies have been carried out with the help of business experts to obtain strategic information on their patrimony and the actions to be taken for the future. The next step would be to conduct a data-driven, quantitative study to compare it with the qualitative opinions drawn up by business experts.

But this objective raises many challenges. The attractiveness of a dwelling is defined on the one hand according to its characteristics, such as surface area, number of rooms, or heating type; social landlords have this information, in what we call "internal data". On the other hand, attractiveness is also defined by the urban environment in which the dwelling is located, with for example the presence of public transportation and schools nearby, the employment rate in the district or the general standard of living in the city. Here, we need to retrieve this information from the internet, whether through open data, or social networks: this is "external data".

To meet these constraints, we believe that using HOUDAL as presented in this article can be successful. Indeed, it is a good solution to store both internal data from social landlords and external data gathered from the Internet, while describing them properly with the appropriate metadata. Moreover, the study of housing attractiveness is a good example of a Data Intelligence project and the creation of advanced indicators. The external data will be reworked and then cross-referenced with internal data, with the final objective of providing an attractiveness score for each dwelling.

Figure 1 :

 1 Figure 1: Proposed data lake's framework.

Figure 2 :

 2 Figure 2: HOUDAL's interface.

Figure 3 :

 3 Figure 3: HOUDAL sample Neo4J metadata.

https://datagalaxy.com

https://azure.microsoft.com/

https://aws.amazon.com/

https://hadoop.apache.org/

https://neo4j.com