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Abstract

One of the major sources of uncertainty in disassembly systems is the quality or states of post-

consumer products. This paper develops a decision tool for disassembly process planning under

variability of the End-of-Life product quality. The objective is to maximize the profit of the

disassembly process. This latter is calculated as the difference between the revenue generated by

recovered parts and the cost of the disassembly tasks. The revenue of a product (or a subassembly,

or a component) depends on its quality. The proposed methodology helps to take decisions about

the best disassembly process and the depth of disassembly, depending on the quality of the products

to be disassembled. Industrial applicability and interest are shown using an industrial case focused

on the remanufacturing of mechatronic parts in the automotive industry.

Keywords: sustainable manufacturing, product recovery, disassembly, quality uncertainty

management, decision support system

1. Introduction

Reverse logistics and its processes are nowadays well accepted and understood. Indeed, at the

European level, the Brundtland report [1] and worldwide, the United Nations Conference on Sus-

tainable Development are some examples of such concern. This leads to consider a more sustainable

consumption model considering, instead of “use and dispose”, “use and re-use”. Such model is

called circular [2] as disposed equipments are considered as reusable. Moreover, as pointed out in
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[3], ease materials recycling, reuse and re-manufacturing constitute critical factors for sustainable

competitiveness. Besides its environmental advantages among which a raw material and energy

saving of 80%-90% on average [4], it allows the creation of highly skilled jobs and economic growth

[5] and the saving of disposal cost that manufacturers must support by law. Furthermore, the

remanufacturing market is intended for growth since it is under-evaluated and still receives little

interest: the ratio of remanufacturing over new manufacturing is only 1.9% [5]. Indeed, remanu-

facturing generates around 30bne in turnover and employs around 190,000 people and projections

could lead to 70bne to 90bne in turnover with creation of jobs between 34,000 and 65,000 [5]. Fi-

nally, re-manufacturing is a key enabler technology [6, 7] not only for sustainable development but

as well for economic and social developments. As such, it addresses the 3 pillars of sustainability,

i.e. Economic, Social, and Environmental.

The process of re-manufacturing requires (1) to disassemble, (2) to clean, (3) to inspect, diag-

nose and sort, (4) to re-condition and (5) to re-assemble [4, 8]. When considering “systems”, with

several sub-systems as cars, computers, etc., a prior step to disassembly is required in order to di-

agnose the defect and remaining functionalities [9]. Such prior step is a pre-require since returned

products are subject to highly variable condition [4]. The main causes for such a variability in

returned product condition are the age, the customer use modes and the environmental condition

the product suffered. Moreover, the lack of product traceability, in turn, results in the fact lack of

knowledge on their quality. The lack of reliable information for re-manufacturing leads to oppor-

tunities being missed with respect to increased economic or environmental impact [3]. It leads to

uncertainty and high variability in the disassembly step while other steps remain less impacted.

The impact on disassembly mainly includes technical issues in disassembly and variability of the

processing time [10]. Therefore, on one hand, the prior inspection step is of first importance since

it will decide the disassembly “level”, and, on the other hand, it is hard to perform since inspection

and diagnostic of in-situ sub-systems, while they are still mounted on the system, is challenging.

Hence, disassembly lines remain artisanal with versatile workstations at the expense of efficiency.

In order to consider disassembly at an industrial level, one has to tackle these variability and

uncertainty in returned product quality.
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The present paper considers the disassembly process as an industrial process. In such a way, a

single type of product is considered as imput flow of the disassembly process. Such hypothesis seems

realistic when considering mass products such as automobiles, cell phones, laptops, refrigerators,

etc. Hence, the disassembly process cannot be considered as an artisanal-work manner as is

currently. Thus, disassembly process has to be planned in advance and its financial viability has

to be demonstrated.

The aim of this work is to contribute to such a goal. It proposes a tool in order to define the

optimal disassembly depth/level of a product regarding the profit. The originality of the proposed

approach is to consider the health state of the product, its parts and sub-parts in the revenue

estimation as random variables. The state of a part allows to decide its re-cycling: maintenance,

re-use, regeneration or raw material recycling [11]. The re-cycling of a product impacts in a non-

linear way its resale price. The recycling decision requires a quantification of the part capacity to

re-enter a cycle. For such a purpose, we introduce the Remaining Usage Potential (RUP).

The economical optimization of the disassembly process considers the cost of the disassembly

tasks and the revenue of the resale of the disassembled parts [12, 13]. The latter is highly dependent

on the re-entering usage cycle whose decision is based on the RUP. The RUPs of a product and

its parts are considered as distributions since we consider mass recycling.

This paper is structured as follows. A literature review of disassembly planning, taking into

account the quality of products, is presented in Section 2. This is followed in Section 3 by a formal

description of the studied problem. Section 4 presents the developed model along with the solution

approach. Numerical experiments and optimization results are presented in Section 5. Section 6

concludes the paper with future research directions.

2. Literature review

In the literature, the work dealing with disassembly process planning can be classified into two

categories: disassembly sequence planning and disassembly line design and balancing. Here, dis-

assembly sequence planning includes work where execution order of disassembly tasks is explicitly

mentioned as well as work where the execution order is not considered. The first category is studied

in many papers among which we can cite [10, 14–19]. A review paper on the subject is presented
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in [20]. Nevertheless, very few studies have dealt with the case of presence of uncertainty. Among

these works, a study on disassembly process planning under uncertainty of the whole process du-

ration is presented in [21]. Studies in [22] and [23] considered the sequence dependent disassembly

process planning. In other words, how to determine the disassembly sequence where task process-

ing times depend on their execution order. In [23], the sequence dependent disassembly process

planning is studied along with the disassembly line balancing problem. [24] and [25] studied the

problem of disassembly process planning under uncertainty of product parts quality. The quality

of a product part is considered as a discrete state. Both papers used Petri Nets as a modeling

tool. In [24], two quality classes are considered for each product part: repairable or worn out. In

[25], several quality classes are defined as degradation levels. In addition, the revenue generated

from each state, in both papers, is a predetermined constant value. There is no explicit relation

between a quality state and the gained revenue.

In the studies of the second category, disassembly process planning constitute a subproblem. In

fact, the problem consists of selecting a disassembly process and assigning the corresponding tasks

to a number of workstations which is determined simultaneously. In [26], the authors considered

the disassembly line balancing and sequencing under uncertainty of the task processing times.

Even for this category, disassembly process planning under uncertainty remains far less explored

compared to the deterministic case. Almost all the papers were restricted to the consideration

of uncertainty of the disassembly task processing times. We can cite [27–29]. In particular, the

work in [26, 30–34] proposes mathematical models and exact solution approaches to select the

best disassembly process alternative and determine a first design of a disassembly line, under

uncertainty of the task processing times. However, variability caused by the End-of-Life product

states (quality) was not taken into account explicitly. A summary of these different papers is

presented in [35]. Studies in [36, 37] considered the case of task failures caused by defective parts

of an End-of-Life product. A comprehensive survey on disassembly line design and balancing can

be found in [38–40].

Recently, attempts to include End-of-Life quality in disassembly process planning have been

made in [4, 41]. In [41], disassembly process planning for disassembly line balancing problem
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under complete product disassembly and multiple product quality classes was proposed. In [4],

the concept of quality classes adapted from [41] was used considering, this time, partial disassembly

for line balancing. Task processing times for each class were assumed to be random variables with

known non truncated normal probability distributions. This approach of task uncertainty modeling

along with the proposed solution approach are adapted from [32]. In [4], the End-of-Life product

quality is considered implicitly in the same manner as in [32]. The only difference is the fact that

products are classified on different quality categories and then, for each quality class, the method

adapted from [32] is applied. In addition, both in [41] and [4], the quality classes concern only entire

End-of-Life product, ignoring the quality of their subassemblies and components generated during

the disassembly process. Furthermore, these studies have not used and/or graphs to model the

precedence relationships among tasks and subassemblies and components. Koc et al. [42] showed

that the integration of and/or graphs in the problem formulation allowed better solutions to be

obtained compared to the use of simple and precedence diagrams. Also, most of the and/or graphs

used in the literature are part based diagrams. Such graphs do not exploit the precedence relations

among tasks and parts (subassemblies and components) of the End-of-Life product. As a matter

of fact, a modeling process and methodology that are able to jointly define the best disassembly

process alternative and the best disassembly level when disassembly revenue depends explicitly on

the quality of post-consumer products, along with their sub-assemblies and components, has never

been proposed.

One of the main goals of this paper is to answer this question: what is the economical impact of

uncertain product quality on the disassembly process or strategy to be adopted in remanufacturing

systems ? This study proposes for the first time a decision tool based on a methodology to optimize

the specific disassembly strategy and process considering quality of the input return products in

the remanufacturing planning phase. And/or graphs are used to better model the precedence

relations among disassembly tasks and product parts obtained during the disassembly process.

The proposed methodology is applied to a product example, taken and adapted from [4], which

represents a real case study in the automotive part remanufacturing sector, to show its industrial

applicability and benefits.
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3. Problem definition and modeling

In this work, we consider a remanufacturing process where the revenue from retrieved parts

(subassemblies and components) depends on the quality of the incoming return products. For an

End-of-Life product, the problem consists on the selection of a best disassembly process alternative,

among all possible ones, taking into account its RUP and precedence relationships amongst all

disassembly tasks and product parts obtained during the disassembly process.

All possible disassembly process alternatives for an End-of-Life product are represented with a

set I of all the possible disassembly tasks of that product. The objective is to maximize the profit

generated from the best disassembly process alternative to be determined. An optimal disassembly

process alternative includes only a subset I ′ of the tasks I. The subset of disassembly tasks I ′

defines the depth of the disassembly process and it is known after the optimization process. This

will be explained in detail in subsection 3.1.

The following assumptions are used. A single type End-of-Life product has to be partially (or

completely) disassembled. All received items contain all initial parts with no addition or removing

of components. In the case of industrialized disassembly, as it is for remanufacturing systems, this

hypothesis seems realistic when a large percentage of products arrive in these conditions. The

maximum disassembly level is the components level, tasks for material recycling of components

after disassembly are not considered. This assumption corresponds to the components resale

as raw materials. A fixed cost is assigned per disassembly time unit to each disassembly task.

Each component or subassembly has a resale value which represents its revenue. This revenue

depends on the quality of the corresponding component or subassembly. The state or quality of

each subassembly is modeled using the concept of RUP which follows a probability distribution.

This distribution models the variability of RUP of the input return products, as well as their

subassemblies and components. In the optics of industrialized disassembly, i.e. a large number of

products of the same category are returned, to obtain such a probability distribution, statistical

studies on disassembled products can be conducted. The RUP concept is explained in detail in

subsections 3.2, 3.3 and 3.4.
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3.1. And/or graph

The and/or graph, considered in this paper, represents explicitly all the possible disassembly

process alternatives of an End-of-Life product along with the precedence relationships among tasks

and the different product subassemblies and components.

In order to better explain in an intuitive manner the modeling process, we have chosen as a product

a ball point pen taken from the literature [26]. This ball point pen is composed of 10 components,

as shown in Figure 1. Components are identified by their respective numbers and the materials

they are made of (cooper (Cu), polypropylene (PP), polyvinyl chloride (PVC), stainless steel,

steel alloy and ink). The and/or graph in Figure 2 corresponds to the ball point pen example

and is constructed as follows: each subassembly is represented by a node labeled Ak, k ∈ K. For

example, node A0 represents the ball point pen which can be noted as ‘1:10’, A1 represents the

subassembly ‘1:3-5:10’, etc. (see Table 1). For a simplification reason of the and/or graph, the

components generated by all disassembly tasks are not explicitly represented in the graph, only

the subassemblies are. Set K, then, contains only the indices of all possible subassemblies that can

be generated by all the disassembly tasks. Each node labeled Bi, i ∈ I, represents a disassembly

task. For instance, node B1 represents disassembly task ‘1’, B2 represents disassembly task ‘2’, etc.

Set I defines all the possible disassembly tasks. Table 1 summarizes all the possible disassembly

tasks that can be performed on the ball point pen in Figure 1. For each task, the corresponding

generated subassemblies and components are given.

Two types of arcs define the precedence relations between subassemblies (or components) and

disassembly tasks: and and or. The first type imposes a mandatory precedence relation and the

second type is employed for optional precedence dependencies, where only one option is chosen

for a final solution. For example, if a disassembly task generates two subassemblies or more (as

Figure 1: A ball point pen product example
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Figure 2: The and/or graph of the ball point pen example

B10 generates A10 and A9), then it is related to these subassemblies by and -type arcs (in brown

color in Figure 2). If several concurrent disassembly tasks may be performed on a subassembly (as

subassembly A3 can be disassembled by B7 or B8), this subassembly is related to these disassembly

tasks by or -type arcs.

Table 1 can be operated as follows: the number of all possible disassembly tasks is 20; this de-

fines I. The total number of subassemblies and components which can be generated with complete
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Table 1: Ball point pen associated tasks and corresponding subassemblies and components
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1 A1 (1:3-5:10) 4 11 A7 (5:7) 8

2 A2;A4 (5:10;1:4) – 12 A9 (1-2) 3

3 A2;A6 (5:10;1:3) – 13 A11 (5-6) 7

4 A7;A8 (5:7;8:10) – 14 A12 (8-9) 10

5 A5;A13 (5:8;9-10) – 15 A13 (9-10) 8

6 A3 (5:9) 10 16 – 1;2

7 A7;A12 (5:7;8-9) – 17 – 3;4

8 A5 (5:8) 9 18 – 5;6

9 A6 (1:3) 4 19 – 8;9

10 A9;A10 (1-2;3-4) – 20 – 9;10

disassembly process from I is 23; this defines K and all generated components. The numbers 1 to

10 represent respectively the ball point pen components 1 to 10, see Figure 1. The numbers 11 to

23 symbolize respectively the different subassemblies generated by the corresponding tasks. The

number representing A1 is 11, that of A2 is 12, that of A3 is 13, . . . (each time add 10 to the index

of A; 10 is here the components number of the ball point pen). Reading example of Table 1: task

B2 disassembles A0 (the ball point pen) and generates two subassemblies (Figure 2): subassembly

A2 composed of components 5, 6, 7, 8, 9 and 10 (represented with ‘5:10’) and subassembly A4

composed of components 1, 2, 3 and 4 (represented with ‘1:4’). Disassembly task B2 does not

generate any component. Disassembly task B1 generates component 4 and subassembly A1, which

is composed of components 1, 2, 3, 5, 6, 7, 8, 9, and 10.

A sink node ‘S’ is introduced and linked with dummy arcs to all the disassembly tasks (Figure 3).

The dummy arcs linking each disassembly task Bi of I to the node ‘S’ allow the representation of

the disassembly depth. Hence, partial disassembly, for each disassembly process alternative of the

product, is modeled using the and/or graph in Figure 3.

Figure 4 illustrates a disassembly process alternative of the ball point pen. Typically, such a

disassembly process alternative is returned by the decision tool, developed in this paper, after

the optimization process. The disassembly process alternative shown in Figure 4 defines a partial

disassembly of the product. In fact, for a complete disassembly, all the tasks constituting this
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Figure 3: And/or graph of the ball point pen example allowing partial disassembly representation

disassembly alternative must be executed. There are 9 tasks in total: B2, B10, B16, B17, B4, B13,

B15, B18, B20. However, only 4 tasks are selected to define the disassembly process: B2, B4, B13

and B15, as shown in bold in Figure 4. Set I ′ is defined by these 4 selected tasks.

The disassembly process defined by I ′ allows to retrieve subassemblies A4, A11 and A13 (re-

spectively 1:4, 5-6 and 9-10) and components 7 and 8. Since subassemblies A4, A11 and A13 are

no longer disassembled, then tasks B13 and B15 generating them are directly linked to the node S

with dummy arcs, as illustrated in Figure 4. Table 1 gives, as cited earlier, for each disassembly

task the retrieved subassemblies and components after its execution.
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Figure 4: A selected disassembly alternative (partial disassembly)

3.2. Remaining Usage Potential and its probability density function

The main originality of the paper is to consider the state of the product for disassembly.

Indeed, for a mature product, when it goes out of the assembly line, it has been designed to fulfill

some reliability requirements, meaning that its components have been chosen in order to long

for a defined time, in some usage condition and at a required probability. Hence, products at

the beginning of their usage are in the same state. Obviously, in “real life” usage, the product

encounters several situations and environments that it has not been designed for. Such usage

leads to degradations and even failure. Maintenance allows to restore the product in a state such

that it can perform its function but do not fully recover its initial state. Furthermore, the whole

sub-components are not impacted in the same way. Thus, they have their own health state which

differs from the global product.

11



In order to assess the state to be considered for disassembly, we defined the Remaining Usage

Potential (RUP). The RUP stands for the “usage” quantity remaining for a product or a part. In

our proposition, the RUP is evaluated prior to the disassembly. The RUP is evaluated on a [0, 1]

scale. 1 corresponds to the product state at the beginning of its exploitation (the product is at its

maximal RUP); 0 means that the product/part has reached its end of life and has to be recycled

as raw material.

The RUP concept is different from known concepts such as Remaining Useful Life (RUL) or

reliability. Indeed, RUL and reliability assess the product ability to reach a certain time using

either degradation prognostic or probability of performing a function. Both evaluate the product

over “one” maintenance cycle, i.e. its ability to perform its function until the next maintenance.

The RUP evaluates the ability of a product to perform its function over several maintenance cycles.

Hence, it includes the product performance and its ability to maintain its use over a long period.

The usage of a product will make its RUP decreasing according to: (1) the environment, (2)

the way the product is used, (3) the way the product is maintained and (4) the way the product

is built and designed. These 4 factors influencing the RUP will necessarily differ for all products.

They lead to a spread of the RUP when considering several products at the same usage time.

Furthermore, this spread is increased since products do not arrive at the disposal at the same

usage time.

Although the main subject of the paper is not the assessment of the RUP, the following direc-

tions shall be considered to be able to quantify it:

• within the reliability theory, one can consider the Beta parameter of the Weibull distribution

[43]. Indeed, the Beta parameter is representative of the long term degradation of a system.

Further developments of the Weibull distribution has been done in [44];

• within Prognostics and Health Management strategy [45, 46], the product is monitored along

its whole lifetime [47]. The RUL is used in order to take the right decision at the right time.

The RUL is provided thanks to the prognostic process. The RUL is the time left until a failure

or a performance loss occurs. It allows the planning of the next maintenance action. The

RUL differs from the RUP since its time horizon is restricted only to the next maintenance
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action while the RUP’s one is at longer. In analogy with PHM of battery, the RUL could be

seen as the state of charge (SoC) [48] and the RUP as the state of health (SoH) [49]. The

monitored data shall be stored all along the usage life of the product such as proposed in the

MIMOSA initiative1. Such a longitudinal monitoring could be used to evaluate the“disposal”

state of a product;

• finally, if none of the two above apply, one can consider, as in the recycling of end of life

products, to estimate the state of a product, since we consider mass product recycling, a

statistical sampling which can be performed on a periodic basis. For instance, in France,

Indra2 performs (re)qualification of automotive parts, Paperec3 and Remade4 do the same

in the WEEE. Such (re)qualification process leads to propose different levels of waranty

according to the grade of the component.

Considering the “ball point pen” example (Figure 1), one can consider:

• the pen body (component 9) and the button (component 1) have been heavily used lead to

a visible wear. Their reuse as such is unlikely leading to a low RUP;

• the spring (component 8) is heavily used as well. However, it often remains in a state good

enough to be reused straight forwardly leading to a high RUP;

• the ring (component 10) and the clip (component 4) have a more random state since their

usage is more customer related, leading to a spread RUP.

The RUP is modeled as a probability density function since this study considers a mass dis-

assembly process. As such, the number of products to be considered is high and the RUP shall

be considered in a statistical way. As this study is a first step, we consider the RUP as a normal

probability density function truncated in 0 and 1. The RUP follows a truncated normal distribu-

tion on [0, 1] with µ and σ parameters: RUP  N[0,1](µ, σ); µ and σ are respectively the mean

and standard deviation of the original non truncated normal distribution. The mean and standard

1http://www.mimosa.org/
2www.indra.fr/en/home
3www.paprec.com/en/solutions-and-services/recycling-solutions/batteries-and-weee
4www.remadegroup.com/en/know-how/
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deviation of the [0, 1] truncated normal distribution are given by:

µ[0,1] = µ+
φ(0−µ

σ
)− φ(1−µ

σ
)

Φ(1−µ
σ

)− Φ(0−µ
σ

)
σ

σ[0,1] = σ

√√√√1 +
0−µ
σ
φ(0−µ

σ
)− 1−µ

σ
φ(1−µ

σ
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)
−

(
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σ
)

Φ(1−µ
σ

)− Φ(0−µ
σ

)

)2

where φ(x) = 1√
2π
e−

1
2
x2 is the standard normal probability density function and Φ(·) its cumulative

distribution function.

Figure 5 shows, over [0, 1] interval, 3 truncated normal distribution functions with parameters:

(µ = 0, σ = 0.2), (µ = 0.5, σ = 0.3) and (µ = 1, σ = 0.2). Curves in Figure 5 shall stand for the

RUP of either a product, a part (component) or a sub-part (subassembly):

• the yellow curve , with µ = 0 and σ = 0.2, shows a heavily worm part whose RUP is

statistically low;

• the blue curve, with µ = 1 and σ = 0.2, shows a slightly used part whose RUP is statistically

high;

• the red curve in the middle, with µ = 0.5 and σ = 0.3, shows a middle term part whose RUP

is statistically average.
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Figure 5: RUP distrbution examples following normal distributions truncated on 0 and 1
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3.3. Part revenue with respect to its RUP

Since the items have not the same RUP, their resale prices have to be considered as functions of

their RUPs. The resale price represents the revenue (Re) due to recycling recovery of disassembly

items. Obviously, the higher the RUP, the higher the revenue. The following notation is used to

model the RUP:

RUP : Remaining Usage Potential;

N[0,1](µ, σ) : truncated normal distribution on 0 and 1 with parameters µ and σ; in this paper, RUP follows

such a probability density function, but any adequate probability distribution function can

be used (see susection 3.2 for more details);

µ[0,1] : mean of the [0, 1] truncated normal distribution given by: µ[0,1] = µ+
φ( 0−µ

σ
)−φ( 1−µ

σ
)

Φ( 1−µ
σ

)−Φ( 0−µ
σ

)
σ;

φ(·) is the standard normal probability density function and Φ(·) its cumulative distribution

function;

σ[0,1] : standard deviation of the [0, 1] truncated normal distribution given by:

σ[0,1] = σ

√
1 +

0−µ
σ
φ( 0−µ

σ
)− 1−µ

σ
φ( 1−µ

σ
)

Φ( 1−µ
σ

)−Φ( 0−µ
σ

)
−
(
φ( 0−µ

σ
)−φ( 1−µ

σ
)

Φ( 1−µ
σ

)−Φ( 0−µ
σ

)

)2

;

fRUP(rup) : symbolizes the RUP probability density function (PDF) of a given disassembly item; fRUP(rup) =

N[0,1](µ, σ) of the considered disassembly item;

Re(RUP) : revenue due to recycling recovery of a disassembly item; Re is a function of the item RUP,

written Re(RUP);

fRe(re) : symbolizes the revenue probability density function of a disassembly item; combining the

RUP probability density function fRUP(rup) with the item revenue function Re(RUP) gives

the part revenue probability density function fRe(re).

We assume that the resale price is bounded. The upper bound corresponds to the resale price of

an “almost new” used item. Indeed, it is not realistic to consider the sale price as upper bound since

as soon as an item is used it depreciates. The lower bound corresponds to the resale price of the

raw material of the item. The upper bound, resp. the lower one, corresponds to Re(RUP = 1) = b,
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resp. Re(RUP = 0) = a, with b > a > 0.

We defined, for illustration purpose, 3 cases for Re according to the RUP, with the corresponding

definition of Re(RUP):

• the first case considers a linear RUP revenue function, i.e. Re is proportional to the item’s RUP:

Re = (b− a) · RUP + a, affine function (affine)

• the second case considers a rapid growth of the Re revenue according to the item’s RUP with a

stabilization when the item’s RUP becomes medium. Such a Re revenue variation is modeled with

a square root function. Such a case means that the re-sale price of an item remains hight the long

“RUP” term despite the drop of the RUP. Two root functions are considered for this case:

Re = (b− a) ·
√

RUP + a, square root function (root 1)

Re = (b− a) · 4
√

RUP + a, 4th root function (root 2)

• the third one considers Re low for low and medium RUP levels and increases rapidly for high

levels of the RUP:

Re = a eln( b
a

)·RUP, exponential function (expo 1)

Re = e
1
e−1

(
e ln(a)−ln(b)

)
e

1
e−1

(
ln(b)−ln(a)

)
eRUP

, second exponential function (expo 2)

Figure 6 illustrates, for a = 5 and b = 50, the 5 revenue functions. The RUP axis can be read

from the right to the left. Indeed, such reading is the “natural” one since the RUP decreases as

the item is used. The interpretation of the root and exponential cases are as follows:

• root function: the revenue decreases slowly despite the item is good or fair health state.

Indeed, the item keeps a quite high resale price as long as it is at he beginning and until the

middle of its life or as long as it is of good or fair quality. For poor health state, when the

item reaches the end of its life, the revenue decreases rapidly.

• exponential function: the revenue decreases rapidly even if the item is of good quality or at
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Figure 6: Different curves representing variations of Re function of RUP

the beginning of its life. Then, for fair to poor quality items, from the middle up to the end

of its life, the item keeps a quite low resale price.

3.4. Part revenue probability density function

Combining the RUP probability density function with the part revenue function gives the part

revenue probability density function. For the 5 Re functions presented above, the corresponding

probability density functions are:

fRe(re) =
1

b− a
φ(µ, σ, re−a

b−a )

Φ(µ, σ, 1)− Φ(µ, σ, 0)
I[a,b] (pdf-affine)

fRe(re) =
2

(b− a)2
(re − a)

φ(µ, σ, ( re−a
b−a )2)

Φ(µ, σ, 1)− Φ(µ, σ, 0)
I[a,b] (pdf-root 1)

fRe(re) =
4

(b− a)4
(re − a)3

φ(µ, σ, ( re−a
b−a )4)

Φ(µ, σ, 1)− Φ(µ, σ, 0)
I[a,b] (pdf-root 2)

fRe(re) =
1

re ln( b
a
)

φ(µ, σ, 1
ln( b

a
)
ln( re

a
))

Φ(µ, σ, 1)− Φ(µ, σ, 0)
I[a,b] (pdf-expo 1)
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fRe(re) =
1

re (ln(re)− α)

φ(µ, σ, ln( ln(re)−α
β

))

Φ(µ, σ, 1)− Φ(µ, σ, 0)
I[a,b] (pdf-expo 2)

where α =
1

e− 1
(e ln(a)− ln(b)) and β =

1

e− 1
(ln(b)− ln(a));

e = 2.71828 · · · is the Euler’s constant

φ(µ, σ, x) = 1
σ
√

2π
e−

1
2σ2

(x−µ)2 defines the normal probability density function of mean µ and stan-

dard deviation σ and Φ(µ, σ, ·) defines its cumulative distribution function.

We consider 3 cases for the RUP distribution, i.e. RUP  N[0,1](µ, σ), according to the part

quality (see Figure 5): bad (µ = 0, σ = 0.2), medium (µ = 0.5, σ = 0.3) and good (µ = 1, σ = 0.2).

Figures 7, 8 and 9 show the probability density function fRe(re) for Re according to the 3 RUP

distribution cases and the 5 revenue functions.

In the case of bad quality parts, i.e. µ = 0 and σ = 0.2, the average revenue in the case of the

root functions is quite good, around 22 for root1 and 33 for root2, despite the bad state of the

parts (see figure 7). On the contrary, when considering good quality parts, i.e. µ = 1 and σ = 0.2,

the average revenue in the case of exponential functions is quite low, around 28 for expo2 and 37

for expo1, despite the good state of the parts.
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Figure 7: Different probability density functions of Re(RUP): bad part quality
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Figure 9: Different probability density functions of Re(RUP): good part quality

In the next section, the optimization model is presented. The optimization will provide for

each part of a product its optimal depth of disassembly according to the RUPs.
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4. Optimization model and solution approach

The objective is to maximize the profit of the disassembly process, which is defined as the

difference between the net revenue of the recovered parts of the End-of-Life product and the cost

of the corresponding disassembly tasks. To model the disassembly process planning problem, the

following notations are introduced.

4.1. Adopted notation

I : set of disassembly task indices: I = {1, 2, . . . ,N}, N ∈ N∗;

L : set of all product part indices (subassemblies and components): L = {1, 2, . . . , L}, L ∈ N∗;

K : set of indices for the generated subassemblies: K = {0, 1, . . . ,K}, K ∈ N,K < L;

Ak : a subassembly: k ∈ K;

Bi : a disassembly task: i ∈ I;

Li : set of indices of retrieved subassemblies and components by the execution of disassembly

task Bi, i ∈ I;

G` : set of indices of tasks generating subassembly or component `, ` ∈ L;

D` : set of indices of tasks disassembling subassembly `, ` ∈ L;

R̃e` : revenue generated by a subassembly or component `, ` ∈ L (see subsections 3.3 and 3.4),

where R̃e` is a function of R̃UP`: R̃e`(R̃UP`), ` ∈ L; R̃UP` represents the remaining usage

potential of a subassembly or component `, ` ∈ L, as defined in subsection 3.2;

ci : cost of disassembly task Bi, i ∈ I: ci = c · ti,∀i ∈ I; ti is the processing time of task Bi and

c is a fixed cost per disassembly time unit, i ∈ I;

Pk : set of indices of Ak predecessors, k ∈ K: Pk = {i| Bi precedes Ak};

Sk : set of indices of Ak successors, k ∈ K: Sk = {i| Ak precedes Bi}.
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4.2. Decision variables

Two kinds of variables are introduced. A variable of the first type consists to select or to not

select a disassembly task of a disassembly process alternative. A variable of the second type is

used as an intermediate in order to define the disassembly process revenue. These two types of

variables are defined respectively as follows:

xi =


1, if disassembly task Bi, i ∈ I is selected;

0, otherwise.

y` =


0, if

∑
i∈G` xi = 1, ` ∈ L and

∑
i∈D` xi = 1 (` subassembly);

1, otherwise.

Variable y`, ` ∈ L means: for a subassembly with index ` ∈ L, if a disassembly task with index

i, i ∈ G` which generates ` is chosen and, next, another disassembly task j, j ∈ D`, of the same

disassembly process alternative, which disassembles it is also chosen, then its revenue R̃e` is not

taken into account while calculating the revenue of the whole disassembly process. Thus, only

revenues of its components or subassemblies (not disassembled) are considered.

Note that
∑

i∈D` xi and
∑

i∈G` xi ∈ {0, 1},∀` ∈ L (` subassembly) by the fact that only one

disassembly task can be selected to generate the subassembly of index ` and only one disassembly

task can be selected to disassemble it. It follows, then, that y` = 1 for any component (not

subassembly) of index `, ` ∈ L.

4.3. Objective function and constraints

The decision tool proposed in this study uses the optimization model defined hereafter. This

model allows to determine a disassembly process alternative with the maximum profit while consid-

ering the quality or states of the subassemblies and components generated during the disassembly

process. As mentioned in subsection 3.2, the state of a product (subassembly or component) is

modeled using RUP. Hence, by taking the RUP of each subassembly and component, the optimiza-

tion model allows to choose which components and subassemblies to retrieve in order to maximize
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the disassembly process profit. As explained in subsection 3.3, revenue Re of each component or

subassembly depends on its RUP, or is a function of its RUP, i.e. Re(RUP).

The objective function is formulated as follows:

max

{∑
i∈I

∑
`∈Li

R̃e` · y` · xi −
∑
i∈I

ci · xi

}
(1)

The terms of the objective function represent, respectively, the earned profit of retrieved parts and

the cost of the corresponding disassembly tasks.

The introduced constraints are described in the following. To start the selection of an optimal

disassembly process, exactly one disassembly task, among all possible ones, must be chosen to

disassemble the End-of-Life product (symbolized by A0, see subsection 3.1). This is traduced by

equation (2):

∑
i∈S0

xi = 1 (2)

Constraints (3) formulate the precedence relationships among tasks and subassemblies and com-

ponents. Note that, with this equation, a disassembly task could be not selected if the disassembly

process to be retained as optimal is partial.

∑
i∈Sk

xi 6
∑
i∈Pk

xi,∀k ∈ K\{0} (3)

Constraints (4) and (5), as previously mentioned, models an exclusion between the revenue of

a subassembly (which is disassembled) and the revenue of its components. Constraints (5) are

introduced in order to include in the retrained disassembly process revenues that are generated by

selected components.

If
∑
i∈D`

xi = 1 and
∑
i∈G`

xi = 1 then y` = 0, ∀` ∈ L (` subassembly) (4)

y` = 1,∀` ∈ L (` component) (5)
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Finally, the trivial constraints (6) define the possible values of the decision variables.

xi, y` ∈ {0, 1},∀i ∈ I,∀` ∈ L (6)

The optimization model above in its actual form can not be solved using linear programming

solvers. In fact, the total revenue term in the objective function (1) as well as constraints (4) are

not linear. To linearize them, let d` =
∑

i∈D` xi, g` =
∑

i∈G` xi,∀` ∈ L (` subassembly) and zi` =

y` ·xi,∀i ∈ I,∀` ∈ Li. Then, the objective function becomes max{
∑

i∈I
∑

`∈Li R̃e` ·zi`−
∑

i∈I ci ·xi},

such as zi` 6 y`, zi` 6 xi and zi` > y`+xi−1. Constraints (4) can then be replaced by d`+g`−1 6 h`

and y` = 1− h`,∀` ∈ L (` subassembly), where h` ∈ {0, 1}.

4.4. Solution approach

In order to solve the developed model, above, we consider different values of the revenue

R̃e`,∀` ∈ L, where ` represents a subassembly or a component. These values depend on: µ̂` (mean

of R̃e`), σ̂` (standard deviation of R̃e`) and m̂od` (mode or most likely value of R̃e`), ∀` ∈ L.

Concretely, 6 values of R̃e`,∀` ∈ L will be considered: Re` = µ̂`, Re` = m̂od`, Re` = µ̂` ± σ̂` and

Re` = m̂od` ± σ̂`, ∀` ∈ L. The values of µ̂`, m̂od` and σ̂` of the revenue R̃e` of each subassembly

and component `, ` ∈ L, are calculated using nonlinear optimizations with ALGLIB library and

numerical integrations with a Gauss-Legendre quadrature rule.

Subsequently, the obtained problems will be solved using the IBM solver CPLEX 12.6.

5. Numerical illustration: application to a remanufacturing industrial case

The model (1)-(6) as well as the nonlinear optimizations and numerical integrations are imple-

mented in Linux using C++ on a PC with 8×CPU 2.80 GHz and 32 Go RAM. The model (1)-(6)

is solved using ILOG CPLEX 12.6. It is applied to the ball point pen instance illustrated in Figure

1 and to a remanufacturing industrial case product: a Knorr-Bremse EBS 1 Channel Module, see

Figure 10. This latter represents a real case study in the automotive part remanufacturing sector.

Such a product is composed of at least 45 components; the corresponding and/or graph is given

in Figure 11. Figure 12 offers a view of almost all components of the EBS 1 Channel Module.
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(a) Example of a returned
product

(b) Example of a remanufactured
product

Figure 10: Remanufacturing industrial case product: Knorr-Bremse EBS 1 Channel Module

Table 2: Parameters of the two considered instances (Ball point pen and EBS 1 Channel Module)

N K L arcs
and-relations

0 1 2

Ball point pen 20 13 23 41 5 9 6

EBS 1 CM 72 35 67 175 6 29 37

Table 3: The three part state categories according to the part quality: bad, medium and good

state ‘0’ bad quality

µ

0

σ

0.2

state ‘1’ medium quality 0.5 0.3

state ‘2’ good quality 1 0.2

The input data describing each instance is given in Table 2. Recall that (see subsection 4.1) N

represents the number of all disassembly tasks, K the number of all subassemblies of a product and

L the number of all parts of a product (components and subassemblies). Columns ‘and-relations’

report the number of disassembly tasks with no successor in subcolumn ‘0’, with one and-type

arc in subcolumn ‘1’ and with two and-type arcs in subcolumn ‘2’. Column ‘arcs’ gives the total

number of and-type and or-type arcs.

For each component or subassembly ` ∈ L, RUP follows a normal distribution truncated in

0 and 1 with parameters (µ`, σ`), ` ∈ L; i.e. RUP`  N[0,1](µ`, σ`), ` ∈ L. All components and

subassemblies are classified into 3 categories corresponding to different levels of RUL: category ‘0’

(bad state), category ‘1’ (medium state) and category ‘2’ (good state), see Section 3.4.
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Figure 11: And/or graph of Knorr-Bremse EBS 1 Channel Module

The µ` and σ` values, for a component or subassembly ` ∈ L, are defined according to its state

(or quality) category as shown in Table 3. These categories are assigned to all components and

subassemblies of the two considered products according to a rule of common sense, see Table 4.

For example, component 1 of the ball point pen (click button, Figure 1) being widely used during

its operating period is classified in the category ‘0’.

Parameters a` (minimum revenue) and b` (maximum revenue), for each component or sub-

assembly ` ∈ L, are defined as reported in Table 4. The upper bound corresponds to the resale

price of an almost new used item. The value of the EBS 1 Channel Module as almost new used

product is considered to be 796.6e, i.e. b = 796.6e; this value represents an estimate of its real
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Figure 12: Components of the returned Knorr-Bremse EBS 1 Channel Module

average price in the market, see website 1 and website 2. The resale value of a remanufactured

EBS 1 Channel Module is around 100e, see website 3. The revenue which can be generated by

recovering the material of this product is taken to be 1.49e. The latter is obtained by summing

the different material values of all the product components. In order to get an approximation

value for each material, prices of the corresponding raw materials on the market are taken into

account. The values of a, b of subassemblies are considered to be, resp., the sum of a, b values of

their components. This value, for b, is then corrected using a coefficient. Indeed, in the assembly

process of EBS 1 Channel Module as in general, the value of assembled product is greater than

the sum of its components values. In the case of EBS 1 Channel Module, this coefficient is taken

equal to 5. For the ball point pen, b is taken equal to 7.5e, a equal to 0.55 cents of e.

Costs of disassembly tasks are determined using data of job market in France. Indeed, for a full-

time job in an enterprise that applies the statutory weekly working time of 35 hours, an operator

works approximatively 151.67 hours per month. The corresponding minimum salary per month is

1600e (gross), all taxes included for the employer. Hence, the obtained cost of a disassembly task

is 0.29 cents of e per second. Disassembly task times, in seconds, are approximated by exploiting
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Table 4: State category and a, b values for each product component or subassembly

Knorr-Bremse EBS 1 Channel Module Ball point pen

p
a
rt

st
a
te

a b p
ar

t

st
a
te

a b p
a
rt

st
at

e

a b p
a
rt

st
at

e

a b p
a
rt

st
at

e

a b

1 2 0.28 1.0 24 0 0.40 100.0 47 1 148.96 78461.2 70 2 113.59 55406.2 1 0 0.003 15.0

2 2 0.28 1.0 25 2 10.00 1500.0 48 1 0.70 1211.5 71 1 126.63 58195.8 2 0 0.002 10.0

3 2 0.06 1.0 26 1 7.00 1000.0 49 1 24.52 17741.8 72 2 125.80 57338.8 3 1 0.05 60.0

4 2 0.06 1.0 27 2 2.20 20.0 50 1 148.82 76694.1 73 1 70.80 28013.4 4 0 0.140 20.0

5 2 0.06 1.0 28 1 24.50 3000.0 51 1 148.13 77604.2 74 2 92.10 38119.5 5 0 0.132 5.0

6 2 0.06 1.0 29 1 70.00 4500.0 52 1 148.36 75506.2 75 2 21.31 17269.0 6 2 0.09 10.0

7 2 0.06 1.0 30 2 1.00 300.0 53 1 115.23 59803.3 76 2 111.58 53325.9 7 1 0.066 5.0

8 2 0.06 1.0 31 2 0.35 20.0 54 1 127.33 59407.3 77 2 1.45 2068.5 8 2 0.011 10.0

9 2 0.06 1.0 32 1 0.60 500.0 55 1 146.81 74613.8 78 1 104.53 46671.3 9 1 0.033 100.0

10 1 2.10 3.0 33 0 0.10 30.0 56 1 25.22 18953.4 79 2 19.3 15188.7 10 1 0.105 15.0

11 1 2.10 3.0 34 0 0.10 30.0 57 1 147.53 74649.2 80 1 103.7 45814.3 11 1 0.411 379.5

12 1 2.10 3.0 35 0 0.10 30.0 58 1 148.12 75482.5 . . . . 12 1 0.356 166.8

13 1 2.10 3.0 36 0 0.10 30.0 59 1 114.53 56848.3 . . . . 13 1 0.251 382.2

14 2 0.02 2.0 37 0 0.10 30.0 60 2 114.43 58384.9 . . . . 14 0 0.195 284.8

15 2 0.01 3.0 38 0 0.10 30.0 61 1 146.11 73402.2 . . . . 15 0 0.218 72.7

16 0 0.10 50.0 39 0 0.10 30.0 62 1 147.29 74625.6 . . . . 16 0 0.055 109.5

17 0 0.10 50.0 40 0 0.10 30.0 63 1 114.39 56824.7 . . . . 17 0 0.207 59.9

18 0 0.50 10.0 41 0 0.10 30.0 64 2 113.83 55429.9 . . . . 18 1 0.149 189.7

19 1 4.20 500.0 42 0 0.10 30.0 65 1 127.33 59407.3 . . . . 19 0 0.005 74.0

20 1 4.20 500.0 43 0 0.10 50.0 66 1 105.23 47882.8 . . . . 20 0 0.19 188.7

21 1 13.20 800.0 44 0 0.10 50.0 67 1 145.28 72545.2 . . . . 21 0 0.141 26.8

22 1 0.20 75.0 45 0 0.10 30.0 68 1 112.38 54744.3 . . . . 22 1 0.044 149.2

23 1 0.40 100.0 46 1 149.06 76717.7 69 2 92.90 39537.9 . . . . 23 1 0.138 175.4

some videos in which operators disassemble the products; for Knorr-Bremse EBS 1 Channel Module

see website 4.

Tables 5, 6, 7, 8, 9, and 10 gather the obtained optimization results for different values of

Re`, ` ∈ L. For each value of Re`, ` ∈ L, six different cases are studied (see subsections 3.3 and

3.4):

Affine each revenue R̃e`, ` ∈ L is a function of type (affine).

Root 1 each revenue R̃e`, ` ∈ L is a function of type (root 1).

Root 2 each revenue R̃e`, ` ∈ L is a function of type (root 2).

Expo 1 each revenue R̃e`, ` ∈ L is a function of type (expo 1).
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Expo 2 each revenue R̃e`, ` ∈ L is a function of type (expo 2).

Mixture 20% of all revenues R̃e`,∀` ∈ L are of type (affine), 20% of type (root 1), 20% of type

(root 2), 20% of type (expo 1) and 20% of type (expo 2). In this case, the function

assigned to each component or subassembly is selected randomly.

Columns ‘obj.’, ‘nbr-tasks’, ‘select-tasks’, ‘sub-assmbls.’, ‘components’ and ‘time(s)’ indicate,

respectively, the objective function value, the number of tasks of the selected disassembly alterna-

tive, the selected disassembly tasks (i.e. the disassembly level), the generated subassemblies, the

generated components and the resolution time in seconds.

Results of Tables 5, 6, 7, 8, 9, and 10 can be summarized as follows: the profit of the disassembly

process depends not only on the sequence and level of disassembly but also on the state or quality

of the product. In fact, profit is the difference between revenues (Re) of the components and/or

subassemblies and costs ci of the disassembly tasks. As disassembly costs are known and fixed, then

the profit in our case depends mainly on the revenues of the components and/or subassemblies.

Revenues are random and they are functions of states of the components and subassemblies.

Table 5: Optimization results of ball point pen and EBS 1 Channel Module: Re` = µ̂`,∀` ∈ L

obj. nbr-tasks select-tasks sub-assmbls. components time(s)

Affine 243.5 9 2 6 3;4 10 1.09

B
al

l
p

o
in

t
p

enRoot 1 374.6 9 2 6 3;4 10 1.07

Root 2 491.2 9 2 6 3;4 10 1.14

Expo 1 42.7 9 2 6 10 17 3;9 3;4;10 1.11

Expo 2 26.1 9 2 6 10 17 3;9 3;4;10 1.12

Mixture 415.5 9 2 6 10 3;9;10 10 1.09

Affine 63550.2 12 1 4 15 34 43 3;27;30 3;4;5;6;7;8;9;14;15; 2.9

E
B

S
1

C
h

an
n
el

M
o
d

u
le

16;17;18;32;33

Root 1 69378.6 12 3 10 20 34 43 3;27;30 3;4;5;6;7;8;9;14;15; 3.5

16;17;18;32;33

Root 2 72710.7 12 3 10 20 34 43 3;27;30 3;4;5;6;7;8;9;14;15; 3.2

16;17;18;32;33

Expo 1 34540.7 12 1 4 15 34 43 3;27;30 3;4;5;6;7;8;9;14;15; 2.8

16;17;18;32;33

Expo 2 26689.4 12 1 6 20 34 43 3;27;30 3;4;5;6;7;8;9;14;15; 4.3

16;17;18;32;33

Mixture 71287.1 12 2 22 11;15 10;11;12;13;15;16;17; 3.3

18;24;33;40;41;42;43
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Table 6: Optimization results of ball point pen and EBS 1 Channel Module: Re` = µ̂` − σ̂`,∀` ∈ L

obj. nbr-tasks select-tasks sub-assmbls. components time(s)

Affine 121.4 9 2 6 10 17 3;9 3;4;10 1.09

B
a
ll

p
o
in

t
p

enRoot 1 254.9 9 2 6 3;4 10 1.10

Root 2 401.1 9 2 6 3;4 10 1.09

Expo 1 42.7 9 2 6 10 17 3;9 3;4;10 1.12

Expo 2 26.1 9 2 6 10 17 3;9 3;4;10 1.12

Mixture 306.6 9 2 6 10 3;9;10 10 1.09

Affine 54146.7 12 3 10 20 34 43 3;27;30 3;4;5;6;7;8;9;14;15; 2.9

E
B

S
1

C
h

a
n

n
el

M
o
d

u
le

16;17;18;32;33

Root 1 63884.0 12 3 10 20 34 43 3;27;30 3;4;5;6;7;8;9;14;15; 2.9

16;17;18;32;33

Root 2 69702.4 12 1 4 15 34 43 3;27;30 3;4;5;6;7;8;9;14;15; 2.9

16;17;18;32;33

Expo 1 14852 12 1 6 20 34 43 3;27;30 3;4;5;6;7;8;9;14;15; 2.9

16;17;18;32;33

Expo 2 6782.7 12 1 4 15 34 43 3;27;30 3;4;5;6;7;8;9;14;15; 3.0

16;17;18;32;33

Mixture 66677.6 12 2 22 11;15 10;11;12;13;15;16;17; 3.9

18;24;33;40;41;42;43

Table 7: Optimization results of ball point pen and EBS 1 Channel Module: Re` = µ̂` + σ̂`,∀` ∈ L

obj. nbr-tasks select-tasks sub-assmbls. components time(s)

Affine 372.6 9 2 6 3;4 10 1.08

B
a
ll

p
o
in

t
p

enRoot 1 494.3 9 2 6 3;4 10 1.27

Root 2 581.4 9 2 6 3;4 10 1.11

Expo 1 119.4 9 2 6 10 17 3;9 3;4;10 1.08

Expo 2 88.4 9 2 6 10 17 3;9 3;4;10 1.10

Mixture 526.8 9 2 6 10 3;9;10 10 1.12

Affine 72953.7 12 3 10 20 34 43 3;27;30 3;4;5;6;7;8;9;14;15; 3.0
E

B
S

1
C

h
an

n
el

M
o
d

u
le

16;17;18;32;33

Root 1 74873.2 12 1 6 20 34 43 3;27;30 3;4;5;6;7;8;9;14;15; 3.0

16;17;18;32;33

Root 2 76084.2 12 2 22 11;15 10;11;12;13;15;16;17; 3.0

18;24;33;40;41;42;43

Expo 1 54515.9 12 3 10 20 34 43 3;27;30 3;4;5;6;7;8;9;14;15; 2.9

16;17;18;32;33

Expo 2 46828.7 12 3 10 20 34 43 3;27;30 3;4;5;6;7;8;9;14;15; 2.9

16;17;18;32;33

Mixture 75898.3 12 2 22 11;15 10;11;12;13;15;16;17; 3.0

18;24;33;40;41;42;43

Thus, the profit of the disassembly process depends on the sequence and level of disassembly of

the product. The level of disassembly is itself dependent on the states (quality) of the components
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and subassemblies.

Figures 13 and 14 show in detail the sequence (alternative) and the level of disassembly returned

for each revenue function type of components and subassemblies. Figure 13 illustrates the ball point

Table 8: Optimization results of ball point pen and EBS 1 Channel Module: Re` = m̂od`,∀` ∈ L

obj. nbr-tasks select-tasks sub-assmbls. components time(s)

Affine 226.8 9 2 6 10 17 3;9 3;4;10 1.09

B
a
ll

p
o
in

t
p

enRoot 1 408.4 9 2 6 3;4 10 1.09

Root 2 534.1 9 2 6 3;4 10 1.12

Expo 1 0.324 9 2 5 11 13 18 4;13 5;6;7;8 1.10

Expo 2 0.327 9 1 1 4 1.11

Mixture 458.6 9 2 6 10 3;9;10 10 1.13

Affine 75412.0 12 1 4 15 34 43 3;27;30 3;4;5;6;7;8;9;14;15; 2.9

E
B

S
1

C
h

a
n

n
el

M
o
d

u
le

16;17;18;32;33

Root 1 75909.3 12 1 4 15 34 43 3;27;30 3;4;5;6;7;8;9;14;15; 2.9

16;17;18;32;33

Root 2 76158.4 12 1 6 20 34 43 3;27;30 3;4;5;6;7;8;9;14;15; 2.9

16;17;18;32;33

Expo 1 15616.1 12 1 4 15 34 43 3;27;30 3;4;5;6;7;8;9;14;15; 2.8

16;17;18;32;33

Expo 2 39298.5 12 3 2;3 . 2.7

Mixture 71287.1 12 3 10 20 34 43 3;27;30 3;4;5;6;7;8;9;14;15; 3.3

16;17;18;32;33

Table 9: Optimization results of ball point pen and EBS 1 Channel Module: Re` = m̂od` − σ̂`,∀` ∈ L

obj. nbr-tasks select-tasks sub-assmbls. components time(s)

Affine 117.7 9 2 6 10 17 3;9 3;4;10 1.12

B
al

l
p

oi
n
t

p
enRoot 1 288.7 9 2 6 3;4 10 1.11

Root 2 444.0 9 2 6 3;4 10 1.10

Expo 1 0.324 9 2 5 11 13 18 4;13 6;6;7;8 1.09

Expo 2 0.327 9 1 1 4 1.10

Mixture 349.7 9 2 6 10 3;9;10 10 1.11

Affine 66025.3 12 3 10 20 34 43 3;27;30 3;4;5;6;7;8;9;14;15; 3.0

E
B

S
1

C
h

an
n
el

M
o
d

u
le

16;17;18;32;33

Root 1 70414.7 12 3 10 20 34 43 3;27;30 3;4;5;6;7;8;9;14;15; 2.9

16;17;18;32;33

Root 2 73150.1 12 1 4 15 34 43 3;27;30 3;4;5;6;7;8;9;14;15; 3.0

16;17;18;32;33

Expo 1 15613.5 12 1 4 15 34 43 3;27;30 3;4;5;6;7;8;9;14;15; 2.8

16;17;18;32;33

Expo 2 27926.7 12 3 2;3 . 2.8

Mixture 70573.9 12 2 22 11;15 10;11;12;13;15;16;17; 2.9

18;24;33;40;41;42;43
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pen case and Figure 14 illustrates the case of EBS 1 Channel Module. In order to identify easily

the disassembly alternatives in Figures 13, 14 and to better understand the results in Tables 5,

6, 7, 8, 9, 10, one different color is assigned to each alternative as shown in Table 11. Table 12

illustrates the obtained disassembly alternative with the corresponding objective value for each

type of revenue function and each value of this revenue (Re`, ∀` ∈ L).

We can see that the disassembly sequence corresponding to the maximum profit for both studied

products depends on the revenue functions, see Figures 13, 14 and Table 12. It can be observed

Table 10: Optimization results of ball point pen and EBS 1 Channel Module: Re` = m̂od` + σ̂`,∀` ∈ L

obj. nbr-tasks select-tasks sub-assmbls. components time(s)

Affine 347.2 9 2 6 10 17 3;9 3;4;10 1.11

B
a
ll

p
o
in

t
p

enRoot 1 528.0 9 2 6 3;4 10 1.2

Root 2 573.6 9 2 6 3;4 10 1.3

Expo 1 75.1 9 2 6 10 17 3;9 3;4;10 1.12

Expo 2 60.7 9 2 6 10 17 3;9 3;4;10 1.13

Mixture 569.9 9 2 6 10 3;9;10 10 1.08

Affine 75837.1 12 1 4 15 34 43 3;27;30 3;4;5;6;7;8;9;14;15; 3.0

E
B

S
1

C
h

a
n

n
el

M
o
d

u
le

16;17;18;32;33

Root 1 76574.5 12 2 22 11;15 10;11;12;13;15;16;17; 3.0

18;24;33;40;41;42;43

Root 2 76177.8 12 1 6 20 34 43 3;27;30 3;4;5;6;7;8;9;14;15; 2.9

16;17;18;32;33

Expo 1 35591.2 12 1 4 15 34 43 3;27;30 3;4;5;6;7;8;9;14;15; 2.9

16;17;18;32;33

Expo 2 50831.9 12 3 2;3 . 2.7

Mixture 75791.5 12 1 4 15 34 43 3;27;30 3;4;5;6;7;8;9;14;15; 2.9

16;17;18;32;33

Table 11: Colors representing all obtained disassembly alternatives for each instance

Disassembly alternative Alternative color

B1

B
al

l
p

oi
n
t

p
en

B2 B6

B2 B6 B10

B2 B6 B10 B17

B2 B5 B11 B13 B18

B3

E
B

S
1

M
o
d

u
le

B2 B22

B1 B4 B15 B34 B43

B3 B10 B20 B34 B43

B1 B6 B20 B34 B43
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that the level of disassembly for the same alternative depends on the type of revenue functions.

B1

A1

S

B2

A2 A4

B3

A6

B4

A7 A8

B5

A5

A13

B6

A3

B7

A12

B8

B9

B10

A9 A10

B11

B12B13

A11

B14 B15

B16 B17B18B19 B20

A0

Figure 13: Alternatives and disassembly levels returned according to the type of revenue functions: Ball point pen

Table 12: Obtained disassembly alternative with the corresponding objective value for each revenue function type
and each revenue value

Re` = µ̂` Re` = µ̂` − σ̂` Re` = µ̂` + σ̂` Re` = m̂od` Re` = m̂od` − σ̂` Re` = m̂od` + σ̂`

Affine 243.5 121.4 372.6 226.8 117.7 347.2
B

al
l

p
oi

n
t

p
en

Root 1 374.6 254.9 494.3 408.4 288.7 528.0

Root 2 491.2 401.1 581.4 534.1 444.0 573.6

Expo 1 42.7 42.7 119.4 0.324 0.324 75.1

Expo 2 26.1 26.1 88.4 0.327 0.327 60.7

Mixture 415.5 306.6 526.8 458.6 349.7 569.9

Affine 63550.2 54146.7 72953.7 75412.0 66025.3 75837.1

E
B

S
1

M
o
d

u
le

Root 1 69378.6 63884.0 74873.2 75909.3 70414.7 76574.5

Root 2 72710.7 69702.4 76084.2 76158.4 73150.1 76177.8

Expo 1 34540.7 14852 54515.9 15616.1 15613.5 35591.2

Expo 2 26689.4 6782.7 46828.7 39298.5 27926.7 50831.9

Mixture 71287.1 66677.6 75898.3 71287.1 70573.9 75791.5
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For example, in the case of EBS 1 Channel Module, tasks B3 and B3 B10 B20 B34 B43 represent

two different disassembly levels of the same disassembly alternative, see Figure 14. For the ball

point pen case, tasks B2 B6, B2 B6 B10 and B2 B6 B10 B17 represent three different disassembly

levels of the same disassembly alternative, see Figure 13.

The results show also that for the same alternative and the same level of disassembly, values of

the corresponding profits depend on the type of the revenue functions considered. As example, for

EBS Channel Module case where Re` = m̂od`,∀` ∈ L, functions Affine, Root1 and Expo1 define

the same alternative B1 B4 B15 B34 B43, but values of the objective functions are all different, see

Table 8 and Table 12. For ball point pen case where Re` = µ̂`,∀` ∈ L, functions Affine, Root1

and Root2 define the same alternative B2 B6 with different values of the objective functions, see

B1

A1

B2

A8

A11

S

B3

A2

A3

B4

A5

B5

A14

B6

A7

B7

B8

B9

A6

B10

B11

A4

B12

A9

A30

B13

A10

A32

B14

A18

B15

A13

B16

A12

B17B18

B19

B20

B21 B22

A15

B23

A24

B24

A21

B25

A26

B26

B27B28

A20

A34

B29

A23

B30

A16

B31

B32

B33

B34

A17

B35 B36

A19

B37

B38

B39 B40

B41

A25

B42B43

A27

B44

A22

B45

B46

B47

B48 B49

B50B51
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B52

A33

B53B54

B55 B56

A31

B57 B58

A29

B59B60B61

B62

B63 B64B65

B66B67

B68

A35

B69B70

B71

B72

A0

Figure 14: Alternatives and disassembly levels returned according to the type of revenue functions: EBS 1 Module
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Table 5 and Table 12. These values, for both products, are relatively important for functions of

type (root 1) and (root 2), relatively low for functions of type (expo 1) and (expo 2). They

are rather average for functions of type (affine).

In subsection 3.3, it is mentioned that the revenue Re, which is a function of RUP, is linked to

a and b values since Re(RUP = 1) = b and Re(RUP = 0) = a, with b > a > 0. From this relation,

it is straightforward to deduce that the higher are a and b values the higher is the revenue Re, and

hence higher is the probability that the corresponding disassembly item will be selected for resale.

As a consequence, the optimization results are also sensitive to estimation errors on the values

of a and b. To illustrate this fact, additional experiments are conducted using the ball point pen

example. The obtained results are gothered in Table 13. The considered a and b values correspond

to the original values, presented in Table 4, and ±20% of the original values; the revenue Re` value

is taken to be equal to µ̂`,∀` ∈ L, see Table 13.

The results show that the returned disassembly alternative doesn’t change if estimation errors

on a and b values are of the same magnitute and sign for all the disassemby items. In fact, all

the disassembly alternatives returned for (a, b) − 20% and (a, b) + 20% are exactly the same as

Table 13: Optimization results of the ball point pen with estimation errors on a and b values: Re` = µ̂`,∀` ∈ L

obj. nbr-tasks select-tasks sub-assmbls. components time(s)

Affine 194.6 9 2 6 3;4 10 0.85
(a
,b

)
−

2
0
%Root 1 299.5 9 2 6 3;4 10 0.75

Root 2 392.8 9 2 6 3;4 10 0.75

Expo 1 33.7 9 2 6 10 17 3;9 3;4;10 0.73

Expo 2 20.4 9 2 6 10 17 3;9 3;4;10 0.77

Mixture 332.1 9 2 6 10 3;9;10 10 0.77

Affine 292.4 9 2 6 3;4 10 0.85

(a
,b

)
+

20
%Root 1 449.8 9 2 6 3;4 10 0.78

Root 2 589.7 9 2 6 3;4 10 0.77

Expo 1 51.7 9 2 6 10 17 3;9 3;4;10 0.76

Expo 2 31.7 9 2 6 10 17 3;9 3;4;10 0.78

Mixture 499.0 9 2 6 10 3;9;10 10 0.77

Affine 249.9 9 2 6 10 17 3;9 3;4;10 0.90

m
ix

tu
re
±

20
%

Root 1 381.7 9 2 6 10 3;9;10 10 0.76

Root 2 502.2 9 2 6 10 3;9;10 10 0.77

Expo 1 44.4 9 2 6 10 17 3;9 3;4;10 0.76

Expo 2 27.2 9 2 6 10 17 3;9 3;4;10 0.77

Mixture 438.1 9 2 6 10 3;9;10 10 0.76
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the ones returned for original values of a and b (compare with Table 5). However, the objective

values for the same alternatives in the case of original a and b values are greater than the ones of

(a, b)− 20% and smaller than the ones of (a, b) + 20%.

The results show also, as expected, that the optimal disassembly alternative depends on the es-

timated values of parameters a and b when estimation errors are of different sign, even if they

are of same magnitude. Indeed, in the case of original a and b values (Table 5), the disassembly

alternative returned for functions of types (affine), (root 1) and (root 2) is B2 B6. But, in the

case of mixture ±20%, the alternative B2 B6 B10 B17 is returned for function of type (affine) while

alternative B2 B6 B10 is returned for functions of types (root 1) and (root 2).

The results of this section show the applicability of the developed optimization model and

solution approach in real disassembly context. Indeed, the computational time is short enough to

give to the decision maker the opportunity to generate different disassembly alternatives depending

on the profit expected from the retrieved parts. The profit itself depends on the quality of the

products. This model helps to make a decision on the disassembly alternative to be retained as

disassembly process. Therefore, the choice between complete or partial disassembly can be made

on the basis of the economic arguments.

When considering industrial issues the results allow setting the level of disassembly in order

to design the disassembly process. Therefore, the choice between complete or partial disassembly

can be made on the basis of the economic arguments, as cited just above. Nevertheless, since the

parts are reused and reassembled, some additional cost might be considered such as, for instance,

warranty and re-certification costs. In the pen example, such costs are insignificant while for the

EBS module they are supported by the customer of the disassembled parts. Indeed, such customer,

since it reassembles the EBS module, should re-certificate it for selling to car repair shop. As an

example, Indra could ask a subcontractor to disassemble such used modules while performing the

reassembling and re-certifying the refurbished ones.

The sensibility of results to product quality, i.e. the RUP, highlights 2 key points. First, the

assessment of the product quality is mandatory for industrial issues. Not just once but periodically

in order to re-optimize the disassembly level if it changes and, then, re-organize the disassembly
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process if required. Second, such assessment must be reliable and accurate. This requirement

ensures the confidence in the results and thus in the industrial decision to be made.

In link with subsection 3.2, in the case of the pen, only the 3rd method applies: inspection of

a sample of pens can be performed to statistically evaluate the RUPs of its parts. Since failure

issues for the pen are not critical, visual inspection could be sufficient. For the EBS module,

however, no monitoring of the module is available, only mileage of the truck might be known. In

such case, the 1st method does not apply. Based on the return of experience, from truck repairer,

weak parts are identified and reliability functions could be associated with them leading to RUP

evaluation based on the 2nd method. The 3rd method should be applied to other parts like in the

pen case. Nevertheless, some deeper inspection might be required for specific parts involved in

security issues. Hence, destructive and non-destructive tests could be used. Generally speaking,

the results of these RUP evaluations lead to build histograms. From such histograms, the most

suitable PDFs can be identified. For instance, a normality test can be conducted. Based on the

obtained results, µl and σl are identified, not limited only to the 3 pairs of values given in the 2

examples. Other distributions, hence, can be considered.

Sensitivity of the results to the revenue leads, for industrial decision maker, to follow the

resale price of the parts and raw materials. Disassembly level optimization should be redone when

resale price evolves. The evolution of resale price is mainly market driven. Indeed, some market

intelligence would allow anticipating resale price.

Finally, since the computation time is quite low, around 3s for the EBS module, several scenarios

could be evaluated to make the best decision.

6. Conclusion

The disassembly process plays a key role in revalorising end-of-life products. It allows, effec-

tively, obtaining components and/or materials that can be reused or recycled with much more

interesting recovery rates. To define effective disassembly and derive the economic benefits of the

disassembly process, product quality uncertainty must be taken into account. In order to provide

an answer to this expectation, we presented in this work a decision tool on the disassembly process

planning taking into consideration the quality of the products to be disassembled. The quality
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of a product is modeled using the Remaining Usage Potential (RUP) concept. RUP models the

amount of use remaining before disassembling a product (or subassembly or component). At the

beginning of the operation phase of a product, RUP has a value of 1; a value 0 of RUP means that

the product must undergo a recycling of its material. The RUP is taken as a random variable with

known normal probability distribution truncated on 0 and 1.

To model this problem, a stochastic program is developed. The objective is to maximize the profit

of the disassembly process. The latter is the difference between revenues of subassemblies and com-

ponents and costs of the disassembly tasks. Subassemblies and components revenues are defined

as functions of the RUP. All the possible disassembly alternatives of a product and the precedence

relationships among tasks and subassemblies/components are modeled using an and/or graph.

The developed methodology is evaluated and applied to two product examples: a pedagogical

instance (ball point pen) in order to facilitate the understanding of the modeling approach and eas-

ily assimilate the interpretation of the optimization results, an industrial instance (Knorr-Bremse

EBS 1 Channel Module) which represents a real case study, in the automotive part remanufacturing

sector, to show the industrial applicability of the developed optimization tool.

The optimization results have shown that the profit of the disassembly process depends on the

sequence and level of disassembly of the product, and that the disassembly sequence and level are

themselves dependent on the states or quality of the components and subassemblies. The results

also showed that the level of disassembly for the same sequence or disassembly alternative depends

on the type of variation of components and subassembly revenues according to RUP.

The obtained results are promising and have shown the applicability of the developed method-

ology to real industrial case. The modeling process and optimization tool presented can be easily

adapted for more real life cases like End of Life Vehicles (ELV) or Waste Electrical and Electronic

Equipment (WEEE). Undertaking such case studies is one of our next research objectives. Finally,

as in industrial reality, the processing times of disassembly tasks are characterized by a high vari-

ability. To deal with it, we investigate in our next work the case where costs of the disassembly

tasks are dependent on their processing times which will be taken as random variables.
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