H. Abdi and L. J. Williams, Principal component analysis, Wiley Interdiscip. Rev.: Comput. Stat, vol.2, issue.4, pp.433-459, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01259094

C. C. Aggarwal and P. S. Yu, Outlier detection for high dimensional data, Proceedings of the 2001 ACM SIGMOD International Conference on Management of Data, pp.37-46, 2001.

D. Arthur and S. Vassilvitskii, K-means++: the advantages of careful seeding, Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, pp.1027-1035, 2007.

O. Bachem, M. Lucic, H. Hassani, A. Krause, D. D. Lee et al., Fast and provably good seedings for k-means, Advances in Neural Information Processing Systems, vol.29, pp.55-63, 2016.

A. Banerjee, I. S. Dhillon, J. Ghosh, and S. Sra, Clustering on the unit hypersphere using von mises-fisher distributions, J. Mach. Learn. Res, vol.6, pp.1345-1382, 2005.

S. Basu, I. Davidson, and K. Wagstaff, Constrained Clustering: Advances in Algorithms, Theory, and Applications, 2008.

R. Bekkerman, H. Raghavan, J. Allan, and K. Eguchi, Interactive clustering of text collections according to a user-specified criterion, Proceedings of the 20th International Joint Conference on Artifical Intelligence, pp.684-689, 2007.

J. C. Bezdek, A convergence theorem for the fuzzy ISODATA clustering algorithms, IEEE Trans. Pattern Anal. Mach. Intell, vol.2, issue.1, pp.1-8, 1980.

M. M. Breunig, H. P. Kriegel, R. T. Ng, and J. Sander, LOF: identifying density-based local outliers, Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp.93-104, 2000.

D. Cai, X. He, and J. Han, Document clustering using locality preserving indexing, IEEE Trans. Knowl. Data Eng, vol.17, issue.12, pp.1624-1637, 2005.

M. E. Celebi and H. A. Kingravi, Linear, deterministic, and order-invariant initialization methods for the k-means clustering algorithm, Partitional Clustering Algorithms, pp.79-98, 2015.

M. E. Celebi, H. A. Kingravi, and P. A. Vela, A comparative study of efficient initialization methods for the k-means clustering algorithm, Expert Syst. Appl, vol.40, issue.1, pp.200-210, 2013.

M. Chang, L. Ratinov, D. Roth, and V. Srikumar, Importance of semantic representation: dataless classification, 2008.

I. S. Dhillon and D. S. Modha, Concept decompositions for large sparse text data using clustering, Mach. Learn, vol.42, issue.1-2, pp.143-175, 2001.

D. Greene, D. O'callaghan, and P. Cunningham, How many topics? stability analysis for topic models

E. Pkdd, Part I. LNCS (LNAI), vol.8724, pp.498-513, 2014.

M. A. Hasan, V. Chaoji, S. Salem, and M. J. Zaki, Robust partitional clustering by outlier and density insensitive seeding, Pattern Recogn. Lett, vol.30, issue.11, pp.994-1002, 2009.

I. Katsavounidis, C. C. Kuo, and Z. Zhang, A new initialization technique for generalized Lloyd iteration, IEEE Sig. Process. Lett, vol.1, issue.10, pp.144-146, 1994.

H. W. Kuhn, The Hungarian method for the assignment problem, Nav. Res. Logist. Q, vol.2, issue.1-2, pp.83-97, 1955.

R. M. Martins, D. B. Coimbra, R. Minghim, and A. Telea, Visual analysis of dimensionality reduction quality for parameterized projections, Comput. Graph, vol.41, pp.26-42, 2014.

N. Nidheesh, K. A. Nazeer, and P. Ameer, An enhanced deterministic k-means clustering algorithm for cancer subtype prediction from gene expression data, Comput. Biol. Med, vol.91, pp.213-221, 2017.

T. Su and J. G. Dy, In search of deterministic methods for initializing k-means and Gaussian mixture clustering, Intell. Data Anal, vol.11, issue.4, pp.319-338, 2007.