Service interruption on Monday 11 July from 12:30 to 13:00: all the sites of the CCSD (HAL, Epiciences, SciencesConf, AureHAL) will be inaccessible (network hardware connection).
Skip to Main content Skip to Navigation
Journal articles

Antarctic boundary layer parametrization in a general circulation model: 1-D simulations facing summer observations at Dome C

Abstract : The parametrization of the atmospheric boundary layer (ABL) is critical over the Antarctic Plateau for climate modelling since it affects the climatological temperature inversion and the negatively buoyant near-surface flow over the ice-sheet. This study challenges state-of-the-art parametrizations used in general circulation models to represent the clear-sky summertime diurnal cycle of the ABL at Dome C, Antarctic Plateau. The Laboratoire de Météorologie Dynamique-Zoom model is run in a 1-D configuration on the fourth Global Energy and Water Cycle Exchanges Project Atmospheric Boundary Layers Study case. Simulations are analyzed and compared to observations, giving insights into the sensitivity of one model that participates to the intercomparison exercise. Snow albedo and thermal inertia are calibrated leading to better surface temperatures. Using the so-called "thermal plume model" improves the momentum mixing in the diurnal ABL. In stable conditions, four turbulence schemes are tested. Best simulations are those in which the turbulence cuts off above 35 m in the middle of the night, highlighting the contribution of the longwave radiation in the ABL heat budget. However, the nocturnal surface layer is not stable enough to distinguish between surface fluxes computed with different stability functions. The absence of subsidence in the forcings and an underestimation of downward longwave radiation are identified to be likely responsible for a cold bias in the nocturnal ABL. Apart from model-specific improvements, the paper clarifies on which are the critical aspects to improve in general circulation models to correctly represent the summertime ABL over the Antarctic Plateau.
Document type :
Journal articles
Complete list of metadata
Contributor : Nathalie POTHIER Connect in order to contact the contributor
Submitted on : Monday, May 16, 2022 - 8:43:26 AM
Last modification on : Saturday, June 25, 2022 - 3:14:19 AM


JGR Atmospheres - 2017 - Vigno...
Publisher files allowed on an open archive





Etienne Vignon, Frédéric Hourdin, Christophe Genthon, Hubert Gallée, Eric Bazile, et al.. Antarctic boundary layer parametrization in a general circulation model: 1-D simulations facing summer observations at Dome C. Journal of Geophysical Research: Atmospheres, 2017, 122, pp.6818-6843. ⟨10.1002/2017JD026802⟩. ⟨insu-03668339⟩



Record views


Files downloads