Increasing the Cytotoxicity of Ru(II) Polypyridyl Complexes by tuning the Electronic Structure of Dioxo Ligands - Laboratoire d'électrochimie, chimie des interfaces et modélisation pour l'énergie
Article Dans Une Revue Journal of the American Chemical Society Année : 2020

Increasing the Cytotoxicity of Ru(II) Polypyridyl Complexes by tuning the Electronic Structure of Dioxo Ligands

Résumé

Due to the great potential expressed by an anticancer drug candidate previously reported by our group, namely Ru-sq ([Ru(DIP)2(sq)](PF6) (DIP: 4,7-diphenyl-1,10-phenanthroline, sq: semiquinonate ligand), we describe in this work a structure-activity relationship (SAR) that involves a broader range of derivatives resulting from the coordination of different catecholate-like dioxo ligands to the same Ru(DIP)2 core. More in detail, we chose catechols carrying either electron-donating or electron-withdrawing groups EDG or EWG and investigated the physico-chemical and biological properties of their complexes. Several pieces of experimental evidences demonstrated that the coordination of catechols bearing EDGs led to deep red positively charged complexes 1–4 in which the preferred oxidation state of the dioxo ligand is the uninegatively charged semiquinonate. Complexes 5 and 6, on the other hand, are blue/violet neutral complexes which carry an EWG substituted dinegatively charged catecholate ligand. The biological investigation of complexes 1–6 led to the conclusion that the difference in their physico-chemical properties has a strong impact on their biological activity. Thus, complexes 1–4 expressed much higher cytotoxicities than complexes 5 and 6. Complex 1 constitutes the most promising compound of the series and was selected for a more in-depth biological investigation. Apart from its remarkably high cytotoxicity (IC50 = 0.07–0.7 µM in different cancerous cell lines) complex 1 was taken up by HeLa cells very efficiently by a passive transportation mechanism. Moreover, its moderate accumulation in several cellular compartments (i.e. nucleus, lysosomes, mitochondria and cytoplasm) is extremely advantageous in the search of a potential drug with multiple modes of action. Further DNA metalation and metabolic studies pointed to the direct interaction of complex 1 with DNA and to the severe impairment of the mitochondrial function. Multiple targets, together with its outstanding cytotoxicity, make complex 1 a valuable candidate in the field of chemotherapy research. Noteworthy, a preliminary biodistribution study on healthy mice demonstrated the suitability of complex 1 for further in vivo studies.

Mots clés

Fichier principal
Vignette du fichier
Increasing the Cytotoxicity of Ru(II) Polypyridyl Complexes by tuning the Electronic Structure of Dioxo Ligands.pdf (1.09 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02509374 , version 1 (16-03-2020)

Identifiants

Citer

Anna Notaro, Marta Jakubaszek, Nils Rotthowe, Federica Maschietto, Robin Vinck, et al.. Increasing the Cytotoxicity of Ru(II) Polypyridyl Complexes by tuning the Electronic Structure of Dioxo Ligands. Journal of the American Chemical Society, inPress, ⟨10.1021/jacs.9b12464⟩. ⟨hal-02509374⟩
178 Consultations
244 Téléchargements

Altmetric

Partager

More