3D high-precision melt electro written polycaprolactone modified with yeast derived peptides for wound healing - IRSTEA - Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (<b>anciennement Cemagref</b>) Access content directly
Journal Articles Biomaterials Advances Year : 2023

3D high-precision melt electro written polycaprolactone modified with yeast derived peptides for wound healing

Abstract

In this study melt electro written (MEW) scaffolds of poly(ε-caprolactone) PCL are decorated with anti-inflammatory yeast-derived peptide for skin wound healing. Initially, 13 different yeast-derived peptides were screened and analyzed using both in vitro and in vivo assays. The MEW scaffolds are functionalized with the selected peptide VLSTSFPPW (VW-9) with the highest activity in reducing pro-inflammatory cytokines and stimulating fibroblast proliferation, migration, and collagen production. The peptide was conjugated to the MEW scaffolds using carbodiimide (CDI) and thiol chemistry, with and without plasma treatment, as well as by directly mixing the peptide with the polymer before printing. The MEW scaffolds modified using CDI and thiol chemistry with plasma treatment showed improved fibroblast and macrophage penetration and adhesion, as well as increased cell proliferation and superior anti-inflammatory properties, compared to the other groups. When applied to full-thickness excisional wounds in rats, the peptide-modified MEW scaffold significantly enhanced the healing process compared to controls (p < 0.05). This study provides proof of concept for using yeast-derived peptides to functionalize biomaterials for skin wound healing.
Fichier principal
Vignette du fichier
Mirzaei version HAL.pdf (1.49 Mo) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-04601869 , version 1 (05-06-2024)

Identifiers

Cite

Mahta Mirzaei, Gianina Dodi, Ioannis Gardikiotis, Sorin-Aurelian Pasca, Saeed Mirdamadi, et al.. 3D high-precision melt electro written polycaprolactone modified with yeast derived peptides for wound healing. Biomaterials Advances, 2023, 149, pp.213361. ⟨10.1016/j.bioadv.2023.213361⟩. ⟨hal-04601869⟩
20 View
2 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More