Communication Dans Un Congrès Année : 2024

Strong hallucinations from negation and how to fix them

Swarnadeep Bhar
  • Fonction : Auteur
  • PersonId : 1487638

Résumé

Despite great performance on many tasks, language models (LMs) still struggle with reasoning, sometimes providing responses that cannot possibly be true because they stem from logical incoherence. We call such responses strong hallucinations and prove that they follow from an LM's computation of its internal representations for logical operators and outputs from those representations. Focusing on negation, we provide a novel solution in which negation is treated not as another element of a latent representation, but as an operation over an LM's latent representations that constrains how they may evolve. We show that our approach improves model performance in cloze prompting and natural language inference tasks with negation without requiring training on sparse negative data.
Fichier sous embargo
Fichier sous embargo
0 2 15
Année Mois Jours
Avant la publication
jeudi 10 avril 2025
Fichier sous embargo
jeudi 10 avril 2025
Connectez-vous pour demander l'accès au fichier

Dates et versions

hal-04878406 , version 1 (10-01-2025)

Licence

Identifiants

  • HAL Id : hal-04878406 , version 1

Citer

Nicholas Asher, Swarnadeep Bhar. Strong hallucinations from negation and how to fix them. Association for Computational Linguistics (ACL), Association for Computational Linguistics, Aug 2024, Bangkok / Thailand, Thailand. pp.12670-12687. ⟨hal-04878406⟩
0 Consultations
0 Téléchargements

Partager

More