Interactions in Information Spread - Archive ouverte HAL Access content directly
Conference Papers Year : 2022

Interactions in Information Spread



Large quantities of data flow on the internet. When a user decides to help the spread of a piece of information (by retweeting, liking, posting content), most research works assumes she does so according to information's content, publication date, the user's position in the network, the platform used, etc. However, there is another aspect that has received little attention in the literature: the information interaction. The idea is that a user's choice is partly conditioned by the previous pieces of information she has been exposed to. In this document, we review the works done on interaction modeling and underline several aspects of interactions that complicate their study. Then, we present an approach seemingly fit to answer those challenges and detail a dedicated interaction model based on it. We show our approach fits the problem better than existing methods, and present leads for future works. Throughout the text, we show that taking interactions into account improves our comprehension of information interaction processes in real-world datasets, and argue that this aspect of information spread is should not be neglected when modeling spreading processes. CCS CONCEPTS • General and reference → Surveys and overviews; • Information systems → Clustering; Social recommendation.
Fichier principal
Vignette du fichier
Accepted___PhD_symposium_WWW_22.pdf (3.8 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03778886 , version 1 (16-09-2022)



Gaël Poux-Médard. Interactions in Information Spread. WWW '22: The ACM Web Conference 2022, 2022, Virtual Event, France. pp.313-317, ⟨10.1145/3487553.3524190⟩. ⟨hal-03778886⟩
5 View
1 Download



Gmail Facebook Twitter LinkedIn More