Spatial sequestration of activated-caspase 3 in aggresomes mediates resistance of neuroblastoma cell to bortezomib treatment - CRCL-Analyse intégrée de la dynamique du cancer
Journal Articles Scientific Reports Year : 2024

Spatial sequestration of activated-caspase 3 in aggresomes mediates resistance of neuroblastoma cell to bortezomib treatment

Abstract

Neuroblastoma (NB) is the most common pediatric tumor and is currently treated by several types of therapies including chemotherapies, such as bortezomib treatment. However, resistance to bortezomib is frequently observed by mechanisms that remain to be deciphered. Bortezomib treatment leads to caspase activation and aggresome formation. Using models of patients-derived NB cell lines with different levels of sensitivity to bortezomib, we show that the activated form of caspase 3 accumulates within aggresomes of NB resistant cells leading to an impairment of bortezomib-induced apoptosis and increased cell survival. Our findings unveil a new mechanism of resistance to chemotherapy based on an altered subcellular distribution of the executioner caspase 3. This mechanism could explain the resistance developed in NB patients treated with bortezomib, emphasizing the potential of drugs targeting aggresomes.

Domains

Cancer
Fichier principal
Vignette du fichier
s41598-024-54140-7.pdf (1.73 Mo) Télécharger le fichier
Origin Publisher files allowed on an open archive

Dates and versions

hal-04482149 , version 1 (28-02-2024)

Identifiers

Cite

Kévin Berthenet, Eliézer Aïmontché, Sara El Mrini, Johan Brière, Nathalie Pion, et al.. Spatial sequestration of activated-caspase 3 in aggresomes mediates resistance of neuroblastoma cell to bortezomib treatment. Scientific Reports, 2024, 14, ⟨10.1038/s41598-024-54140-7⟩. ⟨hal-04482149⟩
467 View
32 Download

Altmetric

Share

More